Câu hỏi
Rút gọn biểu thức: \( N = \left( {{1 \over {\sqrt x - 3}} - {1 \over {\sqrt x }}} \right):\left( {{{\sqrt x + 3} \over {\sqrt x - 2}} - {{\sqrt x + 2} \over {\sqrt x - 3}}} \right)\) với \( x > 0;\,\,x \ne 4;\,\,x \ne 9.\)
- A \( N= \frac{-6-3\sqrt{x}}{5\sqrt{x}}\)
- B \( N= \frac{6+3\sqrt{x}}{5\sqrt{x}}\)
- C \( N= \frac{-6+3\sqrt{x}}{5\sqrt{x}}\)
- D \( N= \frac{6-3\sqrt{x}}{5\sqrt{x}}\)
Lời giải chi tiết:
\( \eqalign{ & N = \left( {{1 \over {\sqrt x - 3}} - {1 \over {\sqrt x }}} \right):\left( {{{\sqrt x + 3} \over {\sqrt x - 2}} - {{\sqrt x + 2} \over {\sqrt x - 3}}} \right) \cr & \,\,\,\,\, = {{\sqrt x - \sqrt x + 3} \over {\sqrt x \left( {\sqrt x - 3} \right)}}:{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right) - \left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)} \over {\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}} \cr & \,\,\,\,\,\, = {3 \over {\sqrt x \left( {\sqrt x - 3} \right)}}:{{x - 9 - x + 4} \over {\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}} \cr & \,\,\,\,\,\, = {3 \over {\sqrt x \left( {\sqrt x - 3} \right)}}.{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)} \over { - 5}}\, = {{ - 3\left( {\sqrt x - 2} \right)} \over {5\sqrt x }} = {{6 - 3\sqrt x } \over {5\sqrt x }}. \cr} \)
Chọn D.