Câu hỏi
Rút gọn biểu thức: \(D = \left( {{{\sqrt x + \sqrt y } \over {1 - \sqrt {xy} }} - {{\sqrt x - \sqrt y } \over {1 + \sqrt {xy} }}} \right):\left( {{{y + xy} \over {1 - xy}}} \right)\) với \( x \ge 0;\,\,y \ge 0;\,\,xy \ne 1 \).
- A \( D=-\frac{2}{\sqrt{y}}\)
- B \( D=\frac{\sqrt{y}}{2}\)
- C \( D=\frac{2}{\sqrt{y}}\)
- D \( D=-\frac{\sqrt{y}}{2}\)
Lời giải chi tiết:
\( \eqalign{ & D = \left( {{{\sqrt x + \sqrt y } \over {1 - \sqrt {xy} }} - {{\sqrt x - \sqrt y } \over {1 + \sqrt {xy} }}} \right):\left( {{{y + xy} \over {1 - xy}}} \right) \cr & \,\,\,\,\, = {{\left( {\sqrt x + \sqrt y } \right)\left( {1 + \sqrt {xy} } \right) - \left( {\sqrt x - \sqrt y } \right)\left( {1 - \sqrt {xy} } \right)} \over {\left( {1 - \sqrt {xy} } \right)\left( {1 + \sqrt {xy} } \right)}}.{{1 - xy} \over {y + xy}} \cr & \,\,\,\,\, = {{\sqrt x + \sqrt y + x\sqrt y + y\sqrt x - \left( {\sqrt x - \sqrt y - x\sqrt y + y\sqrt x } \right)} \over {1 - xy}}.{{1 - xy} \over {y + xy}} \cr & \,\,\,\,\, = {{\sqrt x + \sqrt y + x\sqrt y + y\sqrt x - \sqrt x + \sqrt y + x\sqrt y - y\sqrt x } \over {y + xy}} \cr & \,\,\,\,\, = {{2\sqrt y + 2x\sqrt y } \over {y + xy}} = {{2\sqrt y \left( {x + 1} \right)} \over {y\left( {x + 1} \right)}} = {2 \over {\sqrt y }}. \cr} \)
Chọn C.