Biểu diễn tập nghiệm của bất phương trình \(x \ge 8\) trên trục số, ta được
-
A.
-
B.
-
C.
-
D.
Biểu diễn tập nghiệm trên trục số
Ta biểu diễn \(x \ge 8\) trên trục số như sau:
Đáp án : C
Các bài tập cùng chuyên đề
Bất phương trình nào sau đây là bất phương trình bậc nhất một ẩn? Hãy chọn câu đúng?
Bất phương trình \(x - 2 > 4,\) phép biến đổi nào sau đây là đúng?
Bất phương trình $x - 2 < 1$ tương đương với bất phương trình sau:
Bất phương trình bậc nhất $2x - 2 > 4$ có tập nghiệm biểu diễn bởi hình vẽ sau:
Hãy chọn câu đúng. Tập nghiệm của bất phương trình \(1 - 3x \ge 2 - x\) là:
Hãy chọn câu đúng, \(x = - 3\) là một nghiệm của bất phương trình:
Hình vẽ dưới đây biểu diễn tập nghiệm của bất phương trình nào?
Với giá trị của m thì phương trình $x - 2 = 3m + 4$ có nghiệm lớn hơn 3:
Số nguyên nhỏ nhất thỏa mãn bất phương trình $\dfrac{{x + 4}}{5} - x + 5 < \dfrac{{x + 3}}{3} - \dfrac{{x - 2}}{2}$ là
Bất phương trình $2{(x + 2)^2} < 2x(x + 2) + 4$ có nghiệm là
Kết luận nào sau đây là đúng khi nói về nghiệm của bất phương trình $\;(x + 3)(x + 4) > (x - 2)(x + 9) + 25$.
Tìm $x$ để phân thức \(\dfrac{4}{{9 - 3x}}\) không âm.
Tìm \(x\) để biểu thức sau có giá trị dương $A = \dfrac{{x + 27}}{5} - \dfrac{{3x - 7}}{4}$
Với điều kiện nào của \(x\) thì biểu thức \(B = \dfrac{{2x - 4}}{{3 - x}}\) nhận giá trị âm.
Tìm \(x\) để $P = \dfrac{{x - 3}}{{x + 1}}$ có giá trị lớn hơn \(1\).
Tìm số nguyên $x$ thỏa mãn cả hai bất phương trình:
\(\dfrac{{x + 2}}{5} - \dfrac{{3x - 7}}{4} > - 5\) và \(\dfrac{{3x}}{5} - \dfrac{{x - 4}}{3} + \dfrac{{x + 2}}{6} > 6\)
Với những giá trị nào của $x$ thì giá trị của biểu thức \({(x + 1)^2} - 4\) không lớn hơn giá trị của biểu thức \({(x - 3)^2}\).
Giải bất phương trình \(\left( {{x^2} - 4} \right)\left( {x - 3} \right) \ge 0\) ta được:
Số nguyên lớn nhất thỏa mãn bất phương trình \(\dfrac{{1987 - x}}{{15}} + \dfrac{{1988 - x}}{{16}} + \dfrac{{27 + x}}{{1999}} + \dfrac{{28 + x}}{{2000}} > 4\) là