Đề bài

Một vật dao động điều hòa với tần số góc $ω$, khi thế năng bằng $3$ lần động năng thì li độ $x$ và vận tốc $v$ của vật có mối liên hệ với nhau như thế nào?

  • A.

    ω = 2x.v

  • B.

    x = 2v.ω

  • C.

    3v = 2ω.x

  • D.

    ω.x = \(\sqrt 3 \)v

Phương pháp giải

Áp dụng biểu thức xác định li độ, vận tốc dao động của vật khi biết Wt = nWđ :

\(\left\{ \begin{array}{l}{W_t} = n{W_d}\\W = {W_t} + {W_d}\end{array} \right. \to \left\{ \begin{array}{l}{W_t} = \dfrac{n}{{n + 1}}W\\{W_d} = \dfrac{1}{{n + 1}}W\end{array} \right. \to \left\{ \begin{array}{l}x =  \pm A\sqrt {\dfrac{n}{{n + 1}}} \\v =  \pm \dfrac{{A\omega }}{{\sqrt {n + 1} }}\end{array} \right.\)

Lời giải của GV Loigiaihay.com

Khi Wt = 3Wđ

\(\left\{ \begin{array}{l}{W_t} = 3{W_d}\\W = {W_t} + {W_d}\end{array} \right. \to \left\{ \begin{array}{l}{W_t} = \dfrac{3}{{3 + 1}}W\\{W_d} = \dfrac{1}{{3 + 1}}W\end{array} \right. \to \left\{ \begin{array}{l}x =  \pm A\sqrt {\dfrac{3}{{3 + 1}}} \\v =  \pm \dfrac{{A\omega }}{{\sqrt {3 + 1} }}\end{array} \right. \to \dfrac{x}{v} = \dfrac{{\sqrt 3 }}{\omega }\)

Đáp án : D