Cho các phát biểu sau:
1. Hàm số $y = f\left( x \right)$ đạt cực đại tại ${x_0}$ khi và chỉ khi đạo hàm đổi dấu từ dương sang âm qua ${x_0}$.
2. Hàm số $y = f\left( x \right)$ đạt cực trị tại ${x_0}$ khi và chỉ khi ${x_0}$ là nghiệm của đạo hàm.
3. Nếu $f'\left( {{x_0}} \right) = 0$ và $f''\left( {{x_0}} \right) = 0$ thì ${x_0}$ không phải là cực trị của hàm số $y = f\left( x \right)$ đã cho.
4. Nếu $f'\left( {{x_0}} \right) = 0$ và $f''\left( {{x_o}} \right) > 0$ thì hàm số đạt cực đại tại ${x_0}$.
Các phát biểu đúng là:
-
A.
1; 3; 4
-
B.
1
-
C.
1; 2; 4
-
D.
Tất cả đều đúng
Sử dụng các định lý về cực trị hàm số để xét tính đúng, sai của các phát biểu.
+) Ta có định lí: Nếu $f'\left( x \right)$ đổi dấu từ dương sang âm khi $x$ qua điểm ${x_o}$ (theo chiều tăng) thì hàm số đạt cực đại tại điểm ${x_o}$ $ \Rightarrow $ 1 đúng.
+) Điều kiện cần để ${x_o}$ là điểm cực trị của hàm số là: ${x_o}$ là nghiệm của phương trình $f'\left( x \right) = 0$$ \Rightarrow $ 2 sai.
+) Nếu $f'\left( {{x_o}} \right) = 0$ và $f\left( x \right)$ có đạo hàm cấp hai khác 0 tại điểm ${x_o}$ thì:
-) Nếu $f''\left( {{x_o}} \right) < 0$ thì hàm số $f\left( x \right)$ đạt cực đại tại điểm ${x_o}$.
-) Nếu $f''\left( {{x_o}} \right) > 0$ thì hàm số $f\left( x \right)$ đạt cực tiểu tại điểm ${x_o}$.
+) Nếu $f'\left( {{x_o}} \right) = 0$ và $f''\left( {{x_o}} \right) = 0$ thì ta không kết luận gì chứ không phải hàm số không đạt cực trị tại ${x_0}$.
Khi \(\left\{ \begin{array}{l}f'\left( {{x_0}} \right) = 0\\f''\left( {{x_0}} \right) = 0\end{array} \right.\) thì ta không kết luận gì vì có thể xảy ra cả hai trường hợp là hàm số đạt cực trị hoặc không đạt cực trị tại \({x_0}\).
Ví dụ:
+) TH1: Xét hàm \(f\left( x \right) = {x^4}\) có \(f'\left( x \right) = 4{x^3} = 0 \Leftrightarrow x = 0\)
\(f''\left( x \right) = 12{x^2}\) và \(f''\left( 0 \right) = 0\).
Trong TH này hàm số có \(f''\left( 0 \right) = 0\) nhưng vẫn đạt cực tiểu tại \(x = 0\) vì đạo hàm \(f'\left( x \right)\) đổi dấu từ âm sang dương qua \(x = 0\).
+) TH2: Xét hàm \(g\left( x \right) = {x^3}\) có \(f'\left( x \right) = 3{x^2} = 0 \Leftrightarrow x = 0\)
\(f''\left( x \right) = 6x \Rightarrow f''\left( 0 \right) = 0\)
Trong TH này hàm số có \(f''\left( 0 \right) = 0\) nhưng không đạt cực trị tại \(x = 0\) vì đạo hàm \(f'\left( x \right) = 3{x^2}\) không đổi dấu của \(x = 0\).
$ \Rightarrow $ 3 và 4 sai.
Đáp án : B
Các bài tập cùng chuyên đề
Cho hàm số $y = f\left( x \right)$ có đạo hàm trên $\left( {a;b} \right)$. Nếu $f'\left( x \right)$ đổi dấu từ âm sang dương qua điểm ${x_0}$ thuộc \((a;b)\) thì
Giả sử $y = f\left( x \right)$ có đạo hàm cấp hai trên $\left( {a;b} \right)$. Nếu $\left\{ \begin{gathered}f'\left( {{x_0}} \right) = 0 \hfill \\ f''\left( {{x_0}} \right) > 0 \hfill \\ \end{gathered} \right.$ thì
Nếu ${x_0}$ là điểm cực tiểu của hàm số thì $f\left( {{x_0}} \right)$ là:
Nếu ${x_0}$ là điểm cực đại của hàm số thì $\left( {{x_0};f\left( {{x_0}} \right)} \right)$ là:
Điều kiện để hàm số bậc ba không có cực trị là phương trình $y' = 0$ có:
Chọn phát biểu đúng:
Số điểm cực trị của đồ thị hàm số $y = \dfrac{{x - 1}}{{2 - x}}$ là:
Phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số $y = {x^3} - 3{x^2} + 1$ là:
Hàm số nào sau đây không có cực trị?
Hàm số $f\left( x \right) = 2\sin 2x - 3$ đạt cực tiểu tại:
Đồ thị hàm số nào sau đây có $3$ điểm cực trị?
Cho hàm số $y = f\left( x \right)$ có đạo hàm $f'\left( x \right) = \left( {x -1}\right)\left({{x^2}- 2} \right)\left( {{x^4} - 4} \right)$. Số điểm cực trị của hàm số $y = f\left( x \right)$ là:
Đồ thị hàm số $y = {x^3} - 3x + 2$ có $2$ điểm cực trị $A,\;B.$ Diện tích tam giác $OAB\;$ với $O(0;0)$ là gốc tọa độ bằng:
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên trên khoảng $\left( {0;2} \right)$ như sau:
Khẳng định nào sau đây là khẳng định đúng:
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau:
Khẳng định nào sau đây là khẳng định sai:
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau. Khẳng định nào dưới đây là đúng?
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như hình bên dưới, chọn khẳng định sai:
Hàm số $y = {x^3} - 3x^2 + 4$ đạt cực tiểu tại:
Cho hàm số $y = \dfrac{{ - {x^2} + 3x + 6}}{{x + 2}}$, chọn kết luận đúng:
Cho hàm số bậc hai $y = f\left( x \right)$ có đồ thị như hình vẽ bên, một hàm số $g\left( x \right)$ xác định theo $f\left( x \right)$ có đạo hàm $g'\left( x \right) = f\left( x \right) + m$. Tìm tất cả các giá trị thực của tham số $m$ để hàm số $g\left( x \right)$ không có cực trị.