Cho phương trình \({x^2} - 2mx - 4m - 5 = 0\) (1) (\(m\) là tham số).
Cho phương trình \({x^2} - 2mx - 4m - 5 = 0\) (1) (\(m\) là tham số).
Giải phương trình (1) khi \(m = - 2\).
Giải phương trình (1) khi \(m = - 2\).
Đáp án: B
Thay m=-2 vào phương trình đã cho rồi giải phương trình thu được.
Thay \(m = - 2\) vào phương trình (1) ta có: \({x^2} + 4x + 3 = 0\).
Nhận xét thấy \(a - b + 3 = 1 - 4 + 3 = 0\) nên phương trình có hai nghiệm phân biệt \(\left[ \begin{array}{l}{x_1} = - 1\\{x_2} = - \dfrac{c}{a} = - 3\end{array} \right.\).
Vậy khi \(m = - 2\) thì tập nghiệm của phương trình là \(S = \left\{ { - 1; - 3} \right\}\).
Tìm \(m\) để phương trình (1) có hai nghiệm \({x_1},\,\,{x_2}\) thỏa mãn:
\(\dfrac{1}{2}x_1^2 - \left( {m - 1} \right){x_1}{\kern 1pt} + {x_2} - 2m + \dfrac{{33}}{2} = 4059\)
Tìm \(m\) để phương trình (1) có hai nghiệm \({x_1},\,\,{x_2}\) thỏa mãn:
\(\dfrac{1}{2}x_1^2 - \left( {m - 1} \right){x_1}{\kern 1pt} + {x_2} - 2m + \dfrac{{33}}{2} = 4059\)
Đáp án: A
Sử dụng hệ thức Vi-ét
\(\dfrac{1}{2}x_1^2 - \left( {m - 1} \right){x_1}{\kern 1pt} + {x_2} - 2m + \dfrac{{33}}{2} = 4059\).
Phương trình (1) có \(\Delta ' = {m^2} - \left( {4m - 5} \right) = {m^2} + 4m + 5 = {\left( {m + 2} \right)^2} + 1 > 0\,\,\forall m\).
Do đó phương trình (1) luôn có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) với mọi \(m\).
Áp dụng hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2m\\{x_1}{x_2} = - 4m - 5\end{array} \right.\).
Theo bài ra ta có:
\(\begin{array}{l}\,\,\,\,\,\dfrac{1}{2}x_1^2 - \left( {m - 1} \right){x_1}{\kern 1pt} + {x_2} - 2m + \dfrac{{33}}{2} = 4059\\ \Leftrightarrow x_1^2 - 2\left( {m - 1} \right){x_1}{\kern 1pt} + 2{x_2} - 4m + 33 = 8118\\ \Leftrightarrow x_1^2 - 2m{x_1} + 2{x_1}{\kern 1pt} + 2{x_2} - 4m = 8085\\ \Leftrightarrow x_1^2 - 2m{x_1} - 4m - 5 + 2{x_1}{\kern 1pt} + 2{x_2} = 8085 - 5\\ \Leftrightarrow \left( {x_1^2 - 2m{x_1} - 4m - 5} \right) + 2\left( {{x_1}{\kern 1pt} + {x_2}} \right) = 8080\,\,\,\left( * \right)\end{array}\)
Vì \({x_1}\) là nghiệm của phương trình (1) nên ta có: \(x_1^2 - 2m{x_1} - 4m - 5 = 0\).
Do đó:
\(\begin{array}{l}\left( * \right) \Leftrightarrow 2\left( {{x_1} + {x_2}} \right) = 8080\\\,\,\,\,\,\,\, \Leftrightarrow {x_1} + {x_2} = 4040\\\,\,\,\,\,\,\, \Leftrightarrow 2m = 4040\\\,\,\,\,\,\,\, \Leftrightarrow m = 2020\end{array}\)
Vậy \(m = 2020\).
Các bài tập cùng chuyên đề
Chọn phát biểu đúng. Phương trình $a{x^2} + bx + c = 0\,\,(a \ne 0)$ có hai nghiệm ${x_1};{x_2}$. Khi đó
Chọn phát biểu đúng. Phương trình $a{x^2} + bx + c = 0\,\,(a \ne 0)$ có $a - b + c = 0$. Khi đó
Cho hai số có tổng là $S$ và tích là $P$ với ${S^2} \ge 4P$. Khi đó hai số đó là hai nghiệm của phương trình nào dưới đây?
Không giải phương trình, tính tổng hai nghiệm (nếu có) của phương trình ${x^2} - 6x + 7 = 0$
Gọi ${x_1};{x_2}$ là nghiệm của phương trình ${x^2} - 5x + 2 = 0$. Không giải phương trình, tính giá trị của biểu thức $A = x_1^2 + x_2^2$
Gọi ${x_1};{x_2}$ là nghiệm của phương trình $ - 2{x^2} - 6x - 1 = 0$. Không giải phương trình, tính giá trị của biểu thức $N = \dfrac{1}{{{x_1} + 3}} + \dfrac{1}{{{x_2} + 3}}$
Gọi ${x_1};{x_2}$ là nghiệm của phương trình ${x^2} - 20x - 17 = 0$. Không giải phương trình, tính giá trị của biểu thức $C = x_1^3 + x_2^3$
Biết rằng phương trình $\left( {m - 2} \right){x^2} - \left( {2m + 5} \right)x + m + 7 = 0\,\left( {m \ne 2} \right)$ luôn có nghiệm ${x_1};{x_2}$ với mọi $m$. Tìm ${x_1};{x_2}$ theo $m$.
Tìm hai nghiệm của phương trình $18{x^2} + 23x + 5 = 0$ sau đó phân tích đa thức $A = 18{x^2} + 23x + 5$ sau thành nhân tử.
Tìm $u - v$ biết rằng $u + v = 15,uv = 36$ và $u > v$
Lập phương trình nhận hai số $3 - \sqrt 5 $ và $3 + \sqrt 5 $ làm nghiệm.
Biết rằng phương trình \({x^2} - \left( {2a - 1} \right)x - 4a - 3 = 0\) luôn có hai nghiệm ${x_1};{x_2}$ với mọi $a$. Tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào \(a\).
Tìm các giá trị của \(m\) để phương trình \({x^2} - 2\left( {m - 1} \right)x - m + 2 = 0\) có hai nghiệm trái dấu.
Tìm các giá trị của \(m\) để phương trình \({x^2} - 2\left( {m - 3} \right)x + 8 - 4m = 0\) có hai nghiệm âm phân biệt.
Tìm các giá trị nguyên của \(m\) để phương trình \({x^2} - 6x + 2m + 1 = 0\) có hai nghiệm dương phân biệt
Tìm các giá trị của \(m\) để phương trình \(m{x^2} - 2\left( {m - 2} \right)x + 3\left( {m - 2} \right) = 0\) có hai nghiệm phân biệt cùng dấu.
Tìm các giá trị của \(m\) để phương trình \({x^2} - mx - m - 1 = 0\) có hai nghiệm \({x_1},{x_2}\) thỏa mãn: \(x_1^3 + x_2^3 = - 1\).
Tìm các giá trị của \(m\) để phương trình \({x^2} - 5x + m + 4 = 0\) có hai nghiệm \({x_1},{x_2}\) thỏa mãn: \(x_1^2 + x_2^2 = 23\).
Giá trị nào dưới đây gần nhất với giá trị của \(m\)để phương trình \({x^2} + 3x - m = 0\) có hai nghiệm \({x_1},{x_2}\) thỏa mãn: \(2{x_1} + 3{x_2} = 13\).
Tìm giá trị của \(m\) để phương trình \({x^2} + (4m + 1)x + 2(m - 4) = 0\) có hai nghiệm \({x_1},{x_2}\) và biểu thức \(A = {\left( {{x_1} - {x_2}} \right)^2}\) đạt giá trị nhỏ nhất.