Đề bài

Cho tứ diện \(ABCD\) có cạnh $AB$, $BC$, $CD$ bằng nhau và vuông góc với nhau từng đôi một. Khẳng định nào sau đây đúng?

  • A.

    Góc giữa \(AC\) và \(\left( {BCD} \right)\) là góc \(ACB\).

  • B.

    Góc giữa \(AD\) và \(\left( {ABC} \right)\) là góc \(ADB\).

  • C.

    Góc giữa \(AC\) và \(\left( {ABD} \right)\) là góc \(CAB\).

  • D.

    Góc giữa \(CD\) và \(\left( {ABD} \right)\) là góc \(CBD\).

Phương pháp giải

- Tìm hình chiếu của \(A,C\) lên mặt phẳng \(\left( {BCD} \right)\) rồi suy ra góc cần tìm.

- Góc (không vuông) giữa đường thẳng và mặt phẳng là góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng.

Lời giải của GV Loigiaihay.com

Từ giả thiết ta có \(\left\{ \begin{array}{l}AB \bot BC\\AB \bot CD\end{array} \right. \Rightarrow AB \bot \left( {BCD} \right)\).

Do đó \(\left( {AC,\left( {BCD} \right)} \right) = \left( {AC,BC} \right) = \widehat {ACB}\).

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Cho tam giác \(ABC\) vuông cân tại \(A\)\(BC = a.\) Trên đường thẳng qua \(A\) vuông góc với \(\left( {ABC} \right)\) lấy điểm \(S\) sao cho $SA = \dfrac{{a\sqrt 6 }}{2}$. Tính số đo góc giữa đường thẳng \(SA\)\(\left( {ABC} \right)\)

Xem lời giải >>
Bài 2 :

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông cạnh huyền $BC = a$. Hình chiếu vuông góc của \(S\) lên $\left( {ABC} \right)$ trùng với trung điểm$BC$. Biết $SB = a$. Tính số đo của góc giữa $SA$ và $\left( {ABC} \right)$.

Xem lời giải >>
Bài 3 :

Cho hình chóp $S.ABCD$, đáy $ABCD$ là hình vuông cạnh bằng \(a\) và $SA \bot \left( {ABCD} \right)$. Biết \(SA = \dfrac{{a\sqrt 6 }}{3}\). Tính góc giữa $SC$ và $\left( {ABCD} \right)$.

Xem lời giải >>
Bài 4 :

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$. Hình chiếu vuông góc của $S$ lên $\left( {ABC} \right)$ trùng với trung điểm $H$ của cạnh $BC$. Biết tam giác $SBC$ là tam giác đều. Tính số đo của góc giữa $SA$ và $\left( {ABC} \right).$

Xem lời giải >>
Bài 5 :

Cho hình lập phương\(ABCD.A'B'C'D'\). Gọi $\alpha $ là góc giữa $AC'$ và mp $\left( {A'BCD'} \right).$ Chọn khẳng định đúng trong các khẳng định sau?

Xem lời giải >>
Bài 6 :

Trong các mệnh đề sau mệnh đề nào đúng?

Xem lời giải >>
Bài 7 :

Cho hình chóp \(S.ABCD\) có \(SA \bot \left( {ABCD} \right)\) và đáy \(ABCD\) là hình chữ nhật. Gọi \(O\) là tâm của \(ABCD\) và \(I\) là trung điểm của \(SC\). Khẳng định nào sau đây sai ?

Xem lời giải >>
Bài 8 :

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\), \(SA \bot \left( {ABCD} \right)\), \(SA = a\sqrt 6 \). Gọi \(\alpha \) là góc giữa \(SC\)\(mp\left( {SAB} \right)\). Chọn khẳng định đúng trong các khẳng định sau?

Xem lời giải >>
Bài 9 :

Cho hình chóp \(S.ABDC\), với đáy \(ABCD\) là hình bình hành tâm \(O;AD,SA,AB\) đôi một vuông góc \(AD = 8,SA = 6\). \((P)\) là mặt phẳng qua trung điểm của \(AB\) và vuông góc với \(AB\). Thiết diện của \((P)\) và hình chóp có diện tích bằng?

Xem lời giải >>
Bài 10 :

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(a\) và \(SA = SB = SC = b\). Gọi \(G\) là trọng tâm \(\Delta ABC\). Độ dài \(SG\) là:

Xem lời giải >>
Bài 11 :

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(a\)\(SA = SB = SC = b\). Gọi G là trọng tâm \(\Delta ABC\). Xét mặt phẳng \((P)\) đi qua \(A\) và vuông góc với \(SC\). Tìm hệ thức liên hệ giữa \(a\)\(b\) để \((P)\) cắt \(SC\) tại điểm \({C_1}\) nằm giữa \(S\)\(C\).

Xem lời giải >>
Bài 12 :

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông. Mặt bên \(SAB\) là tam giác đều có đường cao \(SH\) vuông góc với \(mp(ABCD)\). Gọi \(\alpha \) là góc giữa \(BD\) và \(mp(SAD)\). Chọn khẳng định đúng trong các khẳng định sau?

Xem lời giải >>
Bài 13 :

Cho tứ diện \(ABCD\) đều. Gọi \(\alpha \) là góc giữa \(AB\) và \(mp(BCD)\). Chọn khẳng định đúng trong các khẳng định sau?

Xem lời giải >>
Bài 14 :

Cho hình lập phương \(ABCD.{A_1}{B_1}{C_1}{D_1}\). Gọi $\alpha $ là góc giữa $A{C_1}$ và mp$\left( {ABCD} \right)$. Chọn khẳng định đúng trong các khẳng định sau?

Xem lời giải >>
Bài 15 :

Cho hình thoi $ABCD$ có tâm $O,\widehat {ADC} = {60^0},AC = 2a$. Lấy điểm $S$ không thuộc $\left( {ABCD} \right)$ sao cho $SO \bot \left( {ABCD} \right)$. Gọi \(\alpha \) là góc giữa đường thẳng \(SB\) và mặt phẳng \(\left( {ABCD} \right)\)\(\tan \alpha  = \dfrac{1}{2}\). Gọi \(\beta \) là góc giữa $SC$$\left( {ABCD} \right)$, chọn mệnh đề đúng :

Xem lời giải >>
Bài 16 :

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(B\), \(AB = a\), \(BC = 2a\), \(SA\) vuông góc với mặt phẳng đáy và \(SA = \sqrt {15} a\) (tham khảo hình bên)

Góc giữa đường thẳng \(SC\) và mặt phẳng đáy bằng

Xem lời giải >>
Bài 17 :

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với (ABCD) và SA=2a. Gọi G là trọng tâm tam giác SAB, \(\alpha \) là góc tạo bởi đường thẳng CG và mặt phẳng (SAC). Tính \(\sin \alpha \).

Xem lời giải >>