Cho hình chóp \(S.ABC\) có \(SA = SB\) và \(CA = CB\). Tính số đo của góc giữa hai đường thẳng chéo nhau \(SC\) và \(AB.\)
-
A.
\({30^0}.\)
-
B.
\({45^0}.\)
-
C.
\({60^0}.\)
-
D.
\({90^0}.\)
Tính tích vô hướng của hai véc tơ \(\overrightarrow {SC} \) và \(\overrightarrow {AB} \) rồi suy ra đáp án.

Xét \(\overrightarrow {SC} .\overrightarrow {AB} = - \overrightarrow {CS} .\left( {\overrightarrow {CB} - \overrightarrow {CA} } \right) = \overrightarrow {CS} .\overrightarrow {CA} - \overrightarrow {CS} .\overrightarrow {CB} \)
\( = CS.CA.\cos \widehat {SCA} - CS.CB.\cos \widehat {SCB}\).
Do \(\Delta SAC = \Delta SBC\left( {c.c.c} \right)\) nên \(\widehat {SCA} = \widehat {SCB} \Rightarrow \cos \widehat {SCA} = \cos \widehat {SCB}\).
Do đó \(CS.CA.\cos \widehat {SCA} - CS.CB.\cos \widehat {SCB} = 0\) (do \(CA = CB\)) hay \(\overrightarrow {SC} .\overrightarrow {AB} = 0\).
Vậy \(SC \bot AB\).
Đáp án : D



