Đề bài

Hạt α có động năng 4 MeV bắn vào một hạt nhân \({}_{4}^{9}Be\)đứng yên, gây ra phản ứng \(\alpha +{}_{4}^{9}Be\to {}_{6}^{12}C+n\).Biết phản ứng không kèm theo bức xạ γ. Hai hạt sinh ra có vectơ vận tốc hợp với nhau một góc bằng 70°. Biết khối lượng của hạt α, \({}_{4}^{9}Be\)và n lần lượt là mα = 4,0015u, mBe = 9,01219u, mn = 1,0087u; lấy u = 931,5 MeV/c2. Động năng của hạt nhân \({}_{6}^{12}C\) xấp xỉ là

  • A.
    0,1952 MeV.                   
  • B.
    0,3178 MeV.            
  • C.
    0,2132 MeV.          
  • D.
    0,3531 MeV. 
Phương pháp giải

Sử dụng công thức tính năng lượng toả ra của phản ứng hạt nhân

Áp dụng định luật bảo toàn động lượng và công thức liên hệ giữa động năng và động lượng: \({{p}^{2}}=2mK\)

Lời giải của GV Loigiaihay.com

+ Năng lượng toả ra của phản ứng là :

\(\Delta E=\left( {{m}_{\alpha }}+{{m}_{Be}}-{{m}_{C}}-{{m}_{n}} \right){{c}^{2}}={{K}_{C}}+{{K}_{n}}-{{K}_{\alpha }}=4,65(MeV)\to {{K}_{C}}+{{K}_{n}}=8,65(MeV)\)

Áp dụng định luật bảo toàn động lượng ta có:

\(\overrightarrow{{{p}_{\alpha }}}=\overrightarrow{{{p}_{C}}}+\overrightarrow{{{p}_{n}}}\Leftrightarrow {{p}_{\alpha }}^{2}=p_{C}^{2}+p_{n}^{2}+2.{{p}_{n}}.{{p}_{C}}.cos\text{7}{{\text{0}}^{o}}\)

\(\to 2{{m}_{\alpha }}{{K}_{\alpha }}=2{{m}_{C}}{{K}_{C}}+2{{m}_{n}}{{K}_{n}}+2.\sqrt{2.{{m}_{C}}{{K}_{C}}}.\sqrt{2.{{m}_{n}}{{K}_{n}}}.c\text{os7}{{\text{0}}^{o}}\to {{K}_{C}}=0,3178(MeV)\)

Đáp án : B