Gọi \(S\) là tập hợp các giá trị nguyên của \(m\) để mọi tiếp tuyến của đồ thị hàm số \(y = {x^3} - \left( {m - 1} \right){x^2} + \left( {m - 1} \right)x + 5\) đều có hệ số góc dương. Số phần tử của tập \(S\) là:
-
A.
Vô số
-
B.
\(4\)
-
C.
\(3\)
-
D.
\(2\)
- Gọi \(M\left( {{x_0};{y_0}} \right)\) thuộc đồ thị hàm số. Hệ số góc của tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm \(M\) là \(k = y'\left( {{x_0}} \right)\).
- Xét dấu tam thức bậc hai: \(a{x^2} + bx + c > 0\,\,\forall x \in \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}a > 0\\\Delta < 0\end{array} \right.\).
Gọi \(M\left( {{x_0};{y_0}} \right)\) thuộc đồ thị hàm số.
Ta có \(y' = 3{x^2} - 2\left( {m - 1} \right)x + m - 1\).
Suy ra hệ số góc của tiếp tuyến của đồ thị hàm số tại điểm \(M\) là \(k = y'\left( {{x_0}} \right) = 3x_0^2 - 2\left( {m - 1} \right){x_0} + m - 1\).
Theo bài ra ta có:
\(\begin{array}{l}k > 0\,\,\forall x \in \mathbb{R}\\ \Leftrightarrow 3x_0^2 - 2\left( {m - 1} \right){x_0} + m - 1 > 0\,\,\forall x \in \mathbb{R}\\ \Leftrightarrow \left\{ \begin{array}{l}3 > 0\,\,\left( {luon\,\,dung} \right)\\\Delta ' = {\left( {m - 1} \right)^2} - 3\left( {m - 1} \right) < 0\,\end{array} \right.\,\forall x \in \mathbb{R}\\ \Leftrightarrow {m^2} - 2m + 1 - 3m + 3 < 0\\ \Leftrightarrow {m^2} - 5m + 4 < 0\\ \Leftrightarrow 1 < m < 4\end{array}\)
Mà \(m \in \mathbb{Z} \Rightarrow S = \left\{ {2;3} \right\}\).
Vậy tập hợp \(S\) có 2 phần tử.
Đáp án : D
Các bài tập cùng chuyên đề
Hệ số góc của tiếp tuyến của đồ thị hàm số $y = \dfrac{{{x^4}}}{4} + \dfrac{{{x^2}}}{2} - 1$ tại điểm có hoành độ $x = - 1$ là:
Viết phương trình tiếp tuyến của đồ thị hàm số $y = - 2{x^3} + 4x + 2$ tại điểm có hoành độ bằng $0.$
Viết phương trình tiếp tuyến của đồ thị hàm số $y = - {x^4} + 6{x^2} - 5$ tại điểm cực tiểu của nó.
Có bao nhiêu tiếp tuyến với đồ thị $\left( C \right):y = {x^4} - 2{x^2}$ đi qua gốc tọa độ $O$?
Tiếp tuyến của đồ thị hàm số $y = \dfrac{{{x^3}}}{3} - 2{x^2} + x + 2$ song song với đường thẳng $y = - 2x + 5$ có phương trình là:
Giả sử tiếp tuyến của đồ thị hàm số $y = 2{x^3} - 6{x^2} + 18x + 1$ song song với đường thẳng $d:12x - y = 0$ có dạng $y = ax + b$. Khi đó tổng $a + b$ là:
Đồ thị hàm số nào sau đây có tiếp tuyến tại giao điểm của đồ thị và trục tung có hệ số góc âm?
Cho hàm số $y = {x^3} - 3{x^2} + 5x - 2$ có đồ thị $(C)$. Viết phương trình tiếp tuyến của đồ thị $(C)$ có hệ số góc nhỏ nhất.
Cho hàm số: $y={{x}^{3}}-{{x}^{2}}+1$ . Tìm điểm nằm trên đồ thị hàm số sao cho tiếp tuyến tại điểm đó có hệ số góc nhỏ nhất.
Cho hàm số $y = {x^4} - 2(m + 1){x^2} + m + 2$ có đồ thị $\left( C \right)$. Gọi $\Delta $ là tiếp tuyến với đồ thị $\left( C \right)$ tại điểm thuộc $\left( C \right)$ có hoành độ bằng $1$. Với giá trị nào của tham số $m$ thì $\Delta $ vuông góc với đường thẳng $d:y = - \dfrac{1}{4}x - 2016$
Cho hàm số $y = \dfrac{{2x - 1}}{{x - 1}}\,\,\,\left( C \right)$. Tìm điểm $M$ thuộc $(C)$ sao cho tiếp tuyến tại $M$ và hai trục tọa độ tạo thành tam giác cân.
Cho hàm số $y = f\left( x \right) = \dfrac{{{x^3}}}{3} - m{x^2} - 6mx - 9m + 12$ có đồ thị hàm số $\left( {{C_m}} \right)$. Khi tham số m thay đổi, các đồ thị $\left( {{C_m}} \right)$ đều tiếp xúc với một đường thẳng cố định. Đường thẳng này có phương trình:
Cho hàm số $y = f(x) = {x^3} + 6{x^2} + 9x + 3{\text{ }}\left( C \right)$.Tồn tại hai tiếp tuyến của $(C)$ phân biệt và có cùng hệ số góc $k$, đồng thời đường thẳng đi qua các tiếp điểm của hai tiếp tuyến đó cắt các trục $Ox, Oy$ tương ứng tại $A$ và $B$ sao cho $OA = 2017.OB.$ Hỏi có bao nhiêu giá trị của $k$ thỏa mãn yêu cầu bài toán?
Tìm tất cả các giá trị của tham số $m$ để đường thẳng $y = - 2x + m$ cắt đồ thị $(H)$ của hàm số $y = \dfrac{{2x + 3}}{{x + 2}}$ tại hai điểm$A,{\text{ }}B$ phân biệt sao cho $P = k_1^{2018} + k_2^{2018}$ đạt giá trị nhỏ nhất (với ${k_1},{k_2}$ là hệ số góc của tiếp tuyến tại $A,{\text{ }}B$ của đồ thị $(H)$.
Biết đồ thị các hàm số $y = {x^3} + \dfrac{5}{4}x - 2$ và $y = {x^2} + x - 2$ tiếp xúc nhau tại điểm $M({x_0}\,;\,{y_0})$. Tìm ${x_0}.$
Cho hàm số $\left( {{C_m}} \right):y = {x^3} + m{x^2} - 9x - 9m.$ Tìm $m$ để $\left( {{C_m}} \right)$ tiếp xúc với $Ox$:
Cho hàm số $y = {x^3} - 3{x^2} + 2x - 5$ có đồ thị $\left( C \right)$. Có bao nhiêu cặp điểm thuộc đồ thị $\left( C \right)$ mà tiếp tuyến với đồ thị tại chúng là hai đường thẳng song song?
Cho hàm số $y = {x^3} + ax + b\,\,\left( {a \ne b} \right)$. Tiếp tuyến với đồ thị hàm số $f\left( x \right)$ tại $x = a$ và $x = b$ song song với nhau. Tính $f\left( 1 \right).$
Cho các hàm số $y = f (x), y = g (x), y = \dfrac{{f\left( x \right) + 3}}{{g\left( x \right) + 1}}$ . Hệ số góc của các tiếp tuyến của đồ thị các hàm số đã cho tại điểm có hoành độ $x = 1$ bằng nhau và khác $0$. Khẳng định nào dưới đây là khẳng định đúng?
Cho hàm số \(y = \dfrac{{2x - 2}}{{x - 2}}\) có đồ thị là\(\left( C \right)\), \(M\)là điểm thuộc \(\left( C \right)\) sao cho tiếp tuyến của \(\left( C \right)\) tại \(M\)cắt hai đường tiệm cận của \(\left( C \right)\) tại hai điểm \(A\), \(B\) thỏa mãn \(AB = 2\sqrt 5 \). Gọi \(S\) là tổng các hoành độ của tất cả các điểm \(M\)thỏa mãn bài toán. Tìm giá trị của \(S\).