Tìm nghiệm tất cả nghiệm nguyên của phương trình $3x - 2y = 5.$
-
A.
\(\left\{ \begin{array}{l}x = 5 - 2t\\y = - 5 - 3t\end{array} \right.\,\,\,\left( {t \in \mathbb{Z}} \right)\)
-
B.
\(\left\{ \begin{array}{l}x = 5 + 2t\\y = 5 - 3t\end{array} \right.\left( {t \in \mathbb{Z}} \right)\)
-
C.
\(\left\{ \begin{array}{l}x = 5 - 2t\\y = 5 + 3t\end{array} \right.\,\,\left( {t \in \mathbb{Z}} \right)\)
-
D.
\(\left\{ \begin{array}{l}x = 5 + 2t\\y = 5 + 3t\end{array} \right.\left( {t \in \mathbb{Z}} \right)\)
Bước 1: Rút gọn phương trình (nếu cần thiết), chú ý đến tính chia hết của các ẩn.
Bước 2: Biểu thị ẩn mà hệ số của nó có giá trị tuyệt đối nhỏ (chẳng hạn $x$ ) theo ẩn kia.
Bước 3: Tách riêng giá trị nguyên ở biểu thức của $x.$
Bước 4: Đặt điều kiện để phân số trong biểu thức của $x$ bằng một số nguyên \(t\), ta được một phương trình bậc nhất hai ẩn $y$ và \(t.\)
- Cứ tiếp tục như trên cho đến khi các ẩn đều được biểu thị dưới dạng một đa thức với các hệ số nguyên.
Ta có \(3x - 2y = 5 \)
\(\Rightarrow y = \dfrac{{3x - 5}}{2} = \dfrac{{2x + x - 5}}{2} \)\(= \dfrac{{2x}}{2} + \dfrac{{x - 5}}{2}= x + \dfrac{{x - 5}}{2}.\)
Hay \(y= x + \dfrac{{x - 5}}{2}.\)
Đặt \(\dfrac{{x - 5}}{2} = t \, (t \in Z)\, \Rightarrow x = 2t + 5 \)
\(\Rightarrow y = 2t + 5 + t \Leftrightarrow y = 3t + 5 \Rightarrow \left\{ \begin{array}{l}x = 5 + 2t\\y = 5 + 3t\end{array} \right.\left( {t \in \mathbb{Z}} \right)\)
Đáp án : D
Các bài tập cùng chuyên đề
Cho phương trình $ax + by = c$ với $a \ne 0,b \ne 0$. Nghiệm của phương trình được biểu diễn bởi
Phương trình nào sau đây là phương trình bậc nhất hai ẩn?
Phương trình nào dưới đây nhận cặp số $\left( { - 2;4} \right)$ làm nghiệm
Phương trình $x - 5y + 7 = 0$ nhận cặp số nào sau đây làm nghiệm?
Tìm $m $ để phương trình $\sqrt {m - 1} x - 3y = - 1$ nhận cặp số $\left( {1;1} \right)$làm nghiệm.
Công thức nghiệm tổng quát của phương trình $3x + 0y = 12$
Trong các cặp số $(0;2),\,( - 1; - 8),\,(1;1),\,(3; 2),\,(1; - 6)$ có bao nhiêu cặp số là nghiệm của phương trình $3x - 2y = 13$.
Cho đường thẳng $d$ có phương trình $(m - 2)x + (3m - 1)y = 6m - 2$
Tìm các giá trị của tham số m để $d$ song song với trục hoành.
Cho đường thẳng $d$ có phương trình $(m - 2)x + (3m - 1)y = 6m + 2$
Tìm các giá trị của tham số $m$ để $d$ song song với trục tung.
Cho đường thẳng $d$ có phương trình $(m - 2)x + (3m - 1)y = 6m - 2$
Tìm các giá trị của tham số $m$ để $d$ đi qua gốc tọa độ.
Chọn khẳng định đúng. Đường thẳng $d$ biểu diễn tập nghiệm của phương trình $3x - y = 3$ là
Cho đường thẳng nào dưới đây có biểu diễn hình học là đường thẳng song song với trục hoành?
Tìm nghiệm nguyên âm lớn nhất của phương trình $ - 5x + 2y = 7$.
Gọi $\left( {x;y} \right)$ là nghiệm nguyên dương nhỏ nhất của phương trình $-4x + 3y = 8$ . Tính $x + y$