Đề bài

Cho \(A = 1 - \dfrac{3}{4} + {\left( {\dfrac{3}{4}} \right)^2} - {\left( {\dfrac{3}{4}} \right)^3} + {\left( {\dfrac{3}{4}} \right)^4} - ... - {\left( {\dfrac{3}{4}} \right)^{2017}} + {\left( {\dfrac{3}{4}} \right)^{2018}}\). Chọn đáp án đúng.

  • A.

    \(A\) không phải là một số nguyên

  • B.

    \(A\) là một số nguyên

  • C.

    \(A\) là một số nguyên dương

  • D.

    \(A\) là một số nguyên âm

Phương pháp giải

+ Nhân \(A\) với \(\dfrac{3}{4}\) rồi thực hiện cộng \(A\) với \(\dfrac{3}{4}A\), sau đó thu gọn kết quả và suy ra \(A\).

+ Sử dụng: Khi \(0 < a < 1\) và \(m > n > 0\) thì \({a^m} < {a^n}\) để đánh giá \(A\)

Lời giải của GV Loigiaihay.com

\(A = 1 - \dfrac{3}{4} + {\left( {\dfrac{3}{4}} \right)^2} - {\left( {\dfrac{3}{4}} \right)^3} + {\left( {\dfrac{3}{4}} \right)^4} - ... - {\left( {\dfrac{3}{4}} \right)^{2017}} + {\left( {\dfrac{3}{4}} \right)^{2018}}\)

\( \Rightarrow \dfrac{3}{4}A = \dfrac{3}{4} - {\left( {\dfrac{3}{4}} \right)^2} + {\left( {\dfrac{3}{4}} \right)^3} - {\left( {\dfrac{3}{4}} \right)^4} + ...\) \( + {\left( {\dfrac{3}{4}} \right)^{2017}} - {\left( {\dfrac{3}{4}} \right)^{2018}} + {\left( {\dfrac{3}{4}} \right)^{2019}}\)  

\( \Rightarrow A + \dfrac{3}{4}A = 1 + {\left( {\dfrac{3}{4}} \right)^{2019}}\)

\( \Rightarrow \left( {1 + \dfrac{3}{4}} \right)A = 1 + {\left( {\dfrac{3}{4}} \right)^{2019}}\)

\( \Rightarrow \dfrac{7}{4}.A = 1 + {\left( {\dfrac{3}{4}} \right)^{2019}}\)

\( \Rightarrow A = \left[ {1 + {{\left( {\dfrac{3}{4}} \right)}^{2019}}} \right]:\dfrac{7}{4} = \left[ {1 + {{\left( {\dfrac{3}{4}} \right)}^{2019}}} \right].\dfrac{4}{7}\)

Suy ra \(A > 0\,\,\,\,\,\,\,\left( 1 \right)\)

Vì \({\left( {\dfrac{3}{4}} \right)^{2019}} < \dfrac{3}{4} \Rightarrow A < \left( {1 + \dfrac{3}{4}} \right).\dfrac{4}{7} = 1\,\,\,\,\,\,\,\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \(0 < A < 1\).

Vậy \(A\) không phải là số nguyên.

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Chọn câu sai. Với hai số hữu tỉ \(a,\,b\) và các số tự nhiên \(m,\,n\)  ta có

Xem lời giải >>
Bài 2 :

Tính \({\left( {\dfrac{2}{3}} \right)^3}\)

Xem lời giải >>
Bài 3 :

Chọn khẳng định đúng. Với số hữu tỉ \(x\) ta có

Xem lời giải >>
Bài 4 :

Kết quả của phép tính \({\left( {\dfrac{1}{7}} \right)^2}{.7^2}\) là:

Xem lời giải >>
Bài 5 :

Chọn câu sai.

Xem lời giải >>
Bài 6 :

Số  ${x^{12}}$ (với $x \ne 0$)  không bằng số nào trong các số sau đây ?

Xem lời giải >>
Bài 7 :

Số  ${2^{24}}$ viết dưới dạng lũy thừa có số mũ $8$  là:

Xem lời giải >>
Bài 8 :

Số $x$ sao cho ${2^x}\; = {\left( {{2^2}} \right)^5}$   là :

Xem lời giải >>
Bài 9 :

Số $a$ thỏa mãn $a:{\left( {\dfrac{1}{3}} \right)^4} = {\left( {\dfrac{1}{3}} \right)^3}$ là :

Xem lời giải >>
Bài 10 :

Giá trị nhỏ nhất của biểu thức ${\left( {x + \dfrac{1}{3}} \right)^2} + \dfrac{1}{{100}}$ đạt được là: 

Xem lời giải >>
Bài 11 :

Cho ${20^n}\;:\;{5^n} = 4$ thì  :

Xem lời giải >>
Bài 12 :

Cho biểu thức $A = \dfrac{{{2^7}{{.9}^3}}}{{{6^5}{{.8}^2}}}$. Chọn khẳng định đúng.

Xem lời giải >>
Bài 13 :

Giá trị của biểu thức \(\dfrac{{{4^6}{{.9}^5} + {6^9}.120}}{{{8^4}{{.3}^{12}} - {6^{11}}}}\) là

Xem lời giải >>
Bài 14 :

Tìm \(x\), biết \({\left( {5x - 1} \right)^6} = 729\)

Xem lời giải >>
Bài 15 :

Có bao nhiêu giá trị của \(x\) thỏa mãn \({\left( {2x + 1} \right)^3} =  - 0,001\)?

Xem lời giải >>
Bài 16 :

Tìm số tự nhiên \(n\) thỏa mãn \({5^n} + {5^{n + 2}} = 650\).

Xem lời giải >>
Bài 17 :

Cho biết : \({1^2} + {2^2} + {3^2} + ... + {10^2} = 385\) . Tính nhanh giá trị của biểu thức sau:

\(S = \left( {{{12}^2} + {{14}^2} + {{16}^2} + {{18}^2} + {{20}^2}} \right) - \left( {{1^2} + {3^2} + {5^2} + {7^2} + {9^2}} \right)\)

Xem lời giải >>