Trong tháng Giêng hai tổ sản xuất được \(720\) chi tiết máy. Tháng Hai, tổ \(1\) vượt mức \(15\% \), tổ hai vượt mức \(12\% \) nên sản xuất được \(819\) chi tiết máy. Tính xem trong tháng giêng, tổ \(2\) sản xuất được bao nhiêu chi tiết máy?
-
A.
\(360\)
-
B.
\(300\)
-
C.
\(420\)
-
D.
\(350\)
Giải theo các bước sau:
+ Lập phương trình: Chọn ẩn và đặt điều kiện; biểu diễn đại lượng chưa biết theo ẩn và đại lượng đã biết; lập Phương trình biểu thị mối quan hệ giữa các đại lượng
+ Giải phương trình
+ Đối chiếu điều kiện rồi kết luận.
Gọi số chi tiết máy tổ \(1\) làm được trong tháng Giêng là \(x\,\left( {x \in {\mathbb{N}^*};\,x < 720} \right)\) (chi tiết máy)
Thì số chi tiết máy tổ \(2\) làm được trong tháng Giêng là: \(720 - x\) (chi tiết máy)
Vì tháng hai, tổ \(1\) vượt mức \(15\% \) nên số chi tiết máy vượt mức là: \(15\% .x = \dfrac{3}{{20}}x\) (chi tiết máy)
Và tổ \(2\) vượt mức \(12\% \) nên số chi tiết máy vượt mức là \(12\% \left( {720 - x} \right) = \dfrac{{3\left( {720 - x} \right)}}{{25}}\) (chi tiết máy)
Vì tháng hai, cả hai tổ sản xuất được \(819\) chi tiết máy nên vượt mức với tháng Giêng là: \(819 - 720 = 99\) (chi tiết máy).
Nên ta có phương trình: \(\dfrac{3}{{20}}x + \dfrac{{3\left( {720 - x} \right)}}{{25}} = 99\)\( \Leftrightarrow 5.3x + 4.3\left( {720 - x} \right) = 99.100\) \( \Leftrightarrow 3x = 1260\, \Leftrightarrow x = 420\left( {TM} \right)\)
Vậy trong tháng Giêng tổ 2 làm được \(720-420=300\) chi tiết máy.
Đáp án : B