Cho tam giác \(ABC\) cân tại \(A.\) Trên tia đối của tia \(BC\) lấy điểm \(M,\) trên tia đối của tia \(CB\) lấy điểm \(N\) sao cho \(MB = NC.\) Kẻ \(BE \bot AM\,\left( {E \in AM} \right);CF \bot AN\,\left( {F \in AN} \right)\).
Cho tam giác \(ABC\) cân tại \(A.\) Trên tia đối của tia \(BC\) lấy điểm \(M,\) trên tia đối của tia \(CB\) lấy điểm \(N\) sao cho \(MB = NC.\) Kẻ \(BE \bot AM\,\left( {E \in AM} \right);CF \bot AN\,\left( {F \in AN} \right)\).
Tam giác \(AMN\) là tam giác gì?
Tam giác \(AMN\) là tam giác gì?
Vuông cân
Cân
Đều
Vuông
Đáp án: B
- Sử dụng trường hợp bằng nhau thứ hai của tam giác để chứng minh \(\Delta ABM = \Delta ACN\), từ đó suy ra hai cạnh tương ứng bằng nhau để suy ra điều phải chứng minh.

\(\Delta ABC\) cân tại \(A\) nên \(AB = AC,\,\widehat {ABC} = \widehat {ACB}\) (1)
Mặt khác: \(\widehat {ABM} + \widehat {ABC} = {180^o}\) (kề bù) (2)
\(\widehat {ACN} + \widehat {ACB} = {180^o}\) (kề bù) (3)
Từ (1), (2) và (3) suy ra \(\widehat {ABM} = \widehat {ACN}\).
Xét \(\Delta ABM\) và \(\Delta ACN\) có:
\(AB = AC\,\,(cmt)\)
\(\widehat {ABM} = \widehat {ACN}\,\,(cmt)\)
\(BM = CN\,\,(gt)\)
\( \Rightarrow \Delta ABM = \Delta ACN\,\,(c.g.c)\)
\( \Rightarrow AM = AN\) (hai cạnh tương ứng).
\( \Rightarrow \Delta AMN\) cân tại \(A.\)
So sánh \(BE\) và \(CF.\)
So sánh \(BE\) và \(CF.\)
\(BE =\dfrac{1}{3}CF\)
\(BE = \dfrac{1}{2}CF\)
\(BE = CF\)
\(BE = 2CF\)
Đáp án: C
- Chứng minh \(\Delta ABE = \Delta ACF\) (cạnh huyền – góc nhọn) từ đó suy ra hai cạnh tương ứng bằng nhau.

Sử dụng kết quả câu trước ta có \(\Delta ABM = \Delta ACN\,\,\) suy ra \(\widehat {{A_1}} = \widehat {{A_2}}\) (hai góc tương ứng).
Xét hai tam giác vuông \(ABE\) và \(ACF\) có:
\(\widehat {AEB} = \widehat {AFC} = {90^o}\)
\(AB = AC\) (vì \(\Delta ABC\) cân tại \(A\))
\(\widehat {{A_1}} = \widehat {{A_2}}\,\,(cmt)\)
\( \Rightarrow \Delta ABE = \Delta ACF\) (cạnh huyền – góc nhọn)
\( \Rightarrow BE = CF\) (hai cạnh tương ứng).
Chọn câu đúng.
Chọn câu đúng.
\(\Delta BME = \Delta CNF\)
\(\Delta BME = \Delta CFN\)
\(\Delta BEM = \Delta CNF\)
\(\Delta MEB = \Delta CFN\)
Đáp án: A
- Sử dụng kết quả câu trước \(\Delta ABE = \Delta ACF\) nên \(BE = CF\) (hai cạnh tương ứng). Từ đó chứng minh \(\Delta BME = \Delta CNF\) (cạnh huyền – cạnh góc vuông).

Sử dụng kết quả câu trước \(\Delta ABE = \Delta ACF\) nên \(BE = CF\) (hai cạnh tương ứng).
Xét hai tam giác vuông \(BME\) và \(CNF\) có:
\(\widehat {BEM} = \widehat {CFN} = {90^o}\)
\(BE = CF\,\,(cmt)\)
\(MB = NC\,\,(gt)\)
\( \Rightarrow \Delta BME = \Delta CNF\) (cạnh huyền – cạnh góc vuông).