Đề bài

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{x - 8}}{{\sqrt[3]{x} - 2}}\,\,\,khi\,\,x > 8\\ax + 4\,\,\,\,\,khi\,\,x \le 8\end{array} \right.\) . Để hàm số liên tục tại $x = 8,$ giá trị của $a$ là:

  • A.

    $1$

  • B.

    $2$

  • C.

    $4$

  • D.

    $3$

Phương pháp giải

Xét tính liên tục của hàm số tại $x = 8:$ \(\mathop {\lim }\limits_{x \to 8} f\left( x \right) = f\left( 8 \right)\)

Lời giải của GV Loigiaihay.com

$\begin{array}{l}\mathop {\lim }\limits_{x \to {8^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {8^ + }} \dfrac{{x - 8}}{{\sqrt[3]{x} - 2}} = \mathop {\lim }\limits_{x \to {8^ + }} \left( {{{\sqrt[3]{x}}^2} + 2\sqrt[3]{x} + 4} \right)\\ = {2^2} + 2.2 + 4 = 12\\\mathop {\lim }\limits_{x \to {8^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {8^ - }} \left( {ax + 4} \right) = 8a + 4\\f\left( 8 \right) = 8a + 4\end{array}$

Hàm số liên tục tại $x = 8$ \( \Leftrightarrow 12 = 8a + 4 \Leftrightarrow a = 1\)

 

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Hàm số \(y = f\left( x \right)\) có đồ thị dưới đây gián đoạn tại điểm có hoành độ bằng bao nhiêu?

Xem lời giải >>
Bài 2 :

Cho hàm số \(f\left( x \right) = \dfrac{{{x^2} + 1}}{{{x^2} + 5x + 6}}\). Hàm số \(f\left( x \right)\) liên tục trên khoảng nào sau đây?

Xem lời giải >>
Bài 3 :

Hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{{x^4} + x}}{{{x^2} + x}}\,\,\,khi\,\,x \ne 0,\,x \ne  - 1\\3\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x =  - 1\\1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 0\end{array} \right.\)

Xem lời giải >>
Bài 4 :

Hàm số \(f\left( x \right) = \left\{ \begin{array}{l} - x\cos x\,\,\,khi\,\,x < 0\\\dfrac{{{x^2}}}{{1 + x}}\,\,\,\,\,\,\,\,\,\,khi\,\,0 \le x < 1\\{x^3}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \ge 1\end{array} \right.\) 

Xem lời giải >>
Bài 5 :

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{3 - x}}{{\sqrt {x + 1}  - 2}}\,\,khi\,\,x \ne 3\\m\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 3\end{array} \right.\). Hàm số đã cho liên tục tại $x = 3$ khi $m$ bằng :

Xem lời giải >>
Bài 6 :

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sin 5x}}{{5x}}\,\,\,khi\,\,x \ne 0\\a + 2\,\,\,\,\,khi\,\,x = 0\end{array} \right.\). Tìm $a$ để hàm số liên tục tại $x = 0.$

Xem lời giải >>
Bài 7 :

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\cos \dfrac{{\pi x}}{2}\,\,\,\,khi\,\,\left| x \right| \le 1\\\left| {x - 1} \right|\,\,\,\,\,\,\,khi\,\,\left| x \right| > 1\end{array} \right.\). Khẳng định nào sau đây đúng nhất?

Xem lời giải >>
Bài 8 :

Chọn giá trị của \(f\left( 0 \right)\) đề hàm số $f\left( x \right)=\left\{ \begin{array}{l}
\dfrac{{\sqrt[3]{{2x + 8}} - 2}}{{\sqrt {3x + 4} - 2}}\,khi\,x \ne 0\\
m\,\,\,\,\,khi\,\,\,\,\,x = 0
\end{array} \right.$ liên tục tại điểm $x = 0.$

Xem lời giải >>
Bài 9 :

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{3 - \sqrt {9 - x} }}{x}\,\,\,khi\,\,0 < x < 9\\m\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 0\\\dfrac{3}{x}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \ge 9\end{array} \right.\). Tìm \(m\) để \(f\left( x \right)\) liên tục trên \(\left[ {0; + \infty } \right)\).

Xem lời giải >>
Bài 10 :

Cho hàm số \(f\left( x \right) =\) \( \left\{ \begin{array}{l}\dfrac{{\tan x}}{x}\,\,\,khi\,\,x \ne 0,x \ne \dfrac{\pi }{2} + k\pi \,\,\left( {k \in Z} \right)\\0\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 0\end{array} \right.\). Hàm số \(y = f\left( x \right)\) liên tục trên các khoảng nào sau đây?

Xem lời giải >>
Bài 11 :

Cho phương trình \(2{x^4} - 5{x^2} + x + 1 = 0\,\,\,\left( 1 \right)\). Trong các mệnh đề sau, mệnh đề nào đúng?

Xem lời giải >>
Bài 12 :

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sqrt {{{\left( {x - 3} \right)}^2}} }}{{x - 3}}\,\,khi\,\,x \ne 3\\m\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,x = 3\end{array} \right.\). Tìm tất cả các giá trị của tham số thực $m$ để hàm số liên tục tại $x = 3.$

Xem lời giải >>
Bài 13 :

Cho $a$ và $b$ là các số thực khác $0.$ Tìm hệ thức liên hệ giữa $a$ và $b$ để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sqrt {ax + 1}  - 1}}{x}\,\,\,khi\,\,x \ne 0\\4{x^2} + 5b\,\,\,\,\,\,\,\,\,khi\,\,x = 0\end{array} \right.\) liên tục tại $x = 0.$

Xem lời giải >>
Bài 14 :

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\sqrt {2x - 4}  + 3\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \ge 2\\\dfrac{{x + 1}}{{{x^2} - 2mx + 3m + 2}}\,\,khi\,\,x < 2\end{array} \right.\)

Tìm tất cả các giá trị của tham số $m$ để hàm số liên tục trên $R.$

Xem lời giải >>
Bài 15 :

Cho hàm số \(f\left( x \right)\) xác định trên $[a; b].$ Trong các khẳng định sau, khẳng định nào đúng?

Xem lời giải >>
Bài 16 :

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\sin x\,\,\,\,\,\,\,khi\,\,\left| x \right| \le \dfrac{\pi }{2}\\ax + b\,\,\,\,khi\,\,\left| x \right| > \dfrac{\pi }{2}\end{array} \right.\) liên tục trên $R.$ Khi đó giá trị của $a$ và $b$ là:

Xem lời giải >>
Bài 17 :

Cho hàm số \(f\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;4} \right]\) sao cho \(f\left( { - 1} \right) = 2\), \(f\left( 4 \right) = 7\). Có thể nói gì về số nghiệm của phương trình \(f\left( x \right) = 5\) trên đoạn \([ - 1;4]\):

Xem lời giải >>
Bài 18 :

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sqrt {x + 6}  - a}}{{\sqrt {x + 1}  - 2}}\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \ne 3\\{x^3} - \left( {2b + 1} \right)x\,\,\,\,khi\,\,x = 3\end{array} \right.\) trong đó $a, b$ là các tham số thực. Biết hàm số liên tục tại $x = 3$. Số nhỏ hơn trong hai số $a$ và $b$ là:

Xem lời giải >>
Bài 19 :

Cho hàm số \(f(x) = {x^3} - 3x - 1\). Số nghiệm của phương trình \(f\left( x \right) = 0\)  trên \(\mathbb{R}\) là:

Xem lời giải >>
Bài 20 :

Giá trị thực của tham số \(m\) để hàm số \(f(x) = \left\{ {\begin{array}{*{20}{l}}{{x^2} - 1}&{{\rm{ khi }}x > 2}\\{m + 1}&{{\rm{ khi }}x \le 2}\end{array}} \right.\)  liên tục tại \(x = 2\) bằng

Xem lời giải >>