Đề bài

Cho dãy số $({u_n})$ với ${u_n} = \dfrac{1}{{1.3}} + \dfrac{1}{{3.5}} + ... + \dfrac{1}{{\left( {2n - 1} \right).\left( {2n + 1} \right)}}$

Khi đó $\lim {u_n}$ bằng?

  • A.

    $\dfrac{1}{2}.$

  • B.

    $\dfrac{1}{4}.$

  • C.

    $1.$    

  • D.

    $2.$

Phương pháp giải

- Rút gọn biểu thức, rồi tính giới hạn.

Lời giải của GV Loigiaihay.com

$\begin{array}{l}{u_n} = \frac{1}{{1.3}} + \frac{1}{{3.5}}+ ... + \frac{1}{{\left( {2n - 1} \right).\left( {2n + 1} \right)}}\\ = \frac{1}{2}. \left( {1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{5}+ ... + \frac{1}{{2n - 1}} - \frac{1}{{2n + 1}}} \right) \\ = \frac{1}{2}.\left( {1 - \frac{1}{{2n + 1}}} \right)\\ \Rightarrow \lim {u_n} = \lim \frac{1}{2}\left( {1 - \frac{1}{{2n + 1}}} \right) = \frac{1}{2}.\end{array}$

Đáp án : A