Rút gọn biểu thức \(\sqrt {4{a^2} + 12a + 9} + \sqrt {4{a^2} - 12a + 9} \) với \( - \dfrac{3}{2} \le a \le \dfrac{3}{2}\) ta được:
-
A.
\( - 4a\)
-
B.
\(4a\)
-
C.
\( - 6\)
-
D.
\(6\)
- Đưa biểu thức dưới dấu căn thành hằng đẳng thức \({\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\) và \({\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\).
- Sử dụng hằng đẳng thức \(\sqrt {{A^2}} = \left| A \right|\)
- Phá dấu giá trị tuyệt đối \(\left| A \right| = \left\{ \begin{array}{l}A\,\,khi\,A \ge 0\\ - A\,\,\,khi\,A < 0\end{array} \right.\) (dựa vào điều kiện đề bài).
Ta có: \(\sqrt {4{a^2} + 12a + 9} = \sqrt {{{\left( {2a} \right)}^2} + 2.3.2a + {3^2}} = \sqrt {{{\left( {2a + 3} \right)}^2}} = \left| {2a + 3} \right|\)
Ta có: \(\sqrt {4{a^2} - 12a + 9} = \sqrt {{{\left( {2a} \right)}^2} - 2.3.2a + {3^2}} = \sqrt {{{\left( {2a - 3} \right)}^2}} = \left| {2a - 3} \right|\)
Mà: \( - \dfrac{3}{2} \le a \le \dfrac{3}{2} \Rightarrow - 3 \le 2a \le 3 \Rightarrow \left\{ \begin{array}{l}2a + 3 \ge 0 \Rightarrow \left| {2a + 3} \right| = 2a + 3\\2a - 3 \le 0 \Rightarrow \left| {2a - 3} \right| = 3 - 2a\end{array} \right.\)
Hay: \(\sqrt {4{a^2} + 12a + 9} = 2a + 3\) và \(\sqrt {4{a^2} - 12a + 9} = 3 - 2a\) với \( - \dfrac{3}{2} \le a \le \dfrac{3}{2}\)
Khi đó: \(\sqrt {4{a^2} + 12a + 9} + \sqrt {4{a^2} - 12a + 9} = 2a + 3 + 3 - 2a = 6\).
Đáp án : D
Học sinh thường quên điều kiện của đề bài nên dẫn đến sai dấu khi phá dấu giá trị tuyệt đối.
Các bài tập cùng chuyên đề
Rút gọn biểu thức $A = \sqrt {36{a^2}} + 3a$ với $a > 0$.
-
A.
$ - 9a$
-
B.
$ - 3a$
-
C.
$ 3a$
-
D.
$ 9a$
a) Rút gọn biểu thức \(x\sqrt {{x^6}} \left( {x < 0} \right).\)
b) Rút gọn và tính giá trị của biểu thức \(x + \sqrt {4{x^2} - 4x + 1} \) tại \(x = - 2,5.\)
Rút gọn các biểu thức sau:
a) \(\sqrt {{{\left( {2 - \sqrt 5 } \right)}^2}} ;\)
b) \(3\sqrt {{x^2}} - x + 1\left( {x < 0} \right);\)
c) \(\sqrt {{x^2} - 4x + 4} \left( {x < 2} \right).\)
Tìm x, biết:
a) x2 = 121
b) 4x2 = 9
c) x2 = 10
Hoàn thành bảng sau vào vở.
Từ đó, nhận xét gì về căn bậc hai số học của bình phương của một số?
Tính
a) \(\sqrt {{{\left( { - 0,4} \right)}^2}} \)
b) \( - \sqrt {{{\left( { - \frac{4}{9}} \right)}^2}} \)
c) \( - 2\sqrt {{3^2}} + {\left( { - \sqrt 6 } \right)^2}\)
Rút gọn các biểu thức sau:
a) \(\sqrt {{{\left( {2 - \sqrt 5 } \right)}^2}} \)
b) \(\sqrt {{a^2}} + \sqrt {{{( - 3a)}^2}} \) với a > 0.
Tìm chỗ sai trong phép chứng minh “voi con nặng bằng voi mẹ” sau đây:
\(\begin{array}{l}{M^2} - 2Mm + {m^2} = {m^2} - 2mM + {M^2}\\{(M - m)^2} = {(m - M)^2}\\\sqrt {{{(M - m)}^2}} = \sqrt {{{(m - M)}^2}} \\M - m = m - M\\2M = 2m\\M = m(!)\end{array}\)
Biết rằng 1 < a < 5, rút gọn biểu thức
A = \(\sqrt {{{\left( {a - 1} \right)}^2}} + \sqrt {{{\left( {a - 5} \right)}^2}} \).
Tìm số thích hợp cho “?”:
a. \(\sqrt {7_{}^2} = ?\);
b. \(\sqrt {\left( { - 9} \right)_{}^2} = ?\);
c. \(\sqrt {a_{}^2} = ?\) với a là một số cho trước.
Áp dụng quy tắc về căn thức bậc hai của một bình phương, hãy rút gọn biểu thức:
a. \(\sqrt {x_{}^2 + 6x + 9} \) với \(x < - 3\);
b. \(\sqrt {y_{}^4 + 2y_{}^2 + 1} \).
Áp dụng quy tắc về căn thức bậc hai của một bình phương, hãy rút gọn biểu thức:
a. \(\sqrt {\left( {5 - x} \right)_{}^2} \) với \(x \ge 5\);
b. \(\sqrt {\left( {x - 3} \right)_{}^4} \);
c. \(\sqrt {\left( {y + 1} \right)_{}^6} \) với \(y < - 1\).
Rút gọn biểu thức:
a. \(A = \sqrt {40_{}^2 - 24_{}^2} \);
b. \(B = \left( {\sqrt {12} + 2\sqrt 3 - \sqrt {27} } \right).\sqrt 3 \);
c. \(C = \frac{{\sqrt {63_{}^3 + 1} }}{{\sqrt {63_{}^2 - 62} }}\);
d. \(D = \sqrt {60} - 5\sqrt {\frac{3}{5}} - 3\sqrt {\frac{5}{3}} \).
Hãy chép lại và hoàn thành Bảng 3.1. Em có nhận xét gì về giá trị của \(\sqrt {{{\left( {2x - 1} \right)}^2}} \) và \(\left| {2x - 1} \right|\)?
Rút gọn:
a) \(\sqrt {{x^8}} \);
b) \(2\sqrt {{{\left( { - y + 5} \right)}^2}} \) với \(y \ge 5\);
c) \( - 3\sqrt {{z^{10}}} \) với \(z < 0\).
Rút gọn biểu thức \(A = \sqrt {144{a^2}} - 9a\) với \(a > 0\).
-
A.
\( - 9a\)
-
B.
\( - 3a\)
-
C.
\(3a\)
-
D.
\(9a\)
Rút gọn biểu thức
$\sqrt {{a^2} + 8a + 16} + \sqrt {{a^2} - 8a + 16} $ với $ - 4 \le a \le 4$ ta được
-
A.
$2a$
-
B.
$8$
-
C.
$ - 8$
-
D.
$ - 2a$
Rút gọn biểu thức sau \(\sqrt {{{\left( {a - b} \right)}^2}} - 3\sqrt {{a^2}} + 2\sqrt {{b^2}} \) với \(a < 0 < b\)
-
A.
\( - 2a + b\)
-
B.
\(3b - 2a\)
-
C.
\(2a + 3b\)
-
D.
\(a + b\)
Nghiệm của phương trình \(\sqrt {{x^2} + 6x + 9} = 4 - x\) là
-
A.
$x = 2$
-
B.
$x = \dfrac{1}{4}$
-
C.
$x = \dfrac{1}{2}$
-
D.
$x = 3$
Số nghiệm của phương trình \(\sqrt {4{x^2} + 4x + 1} = 3 - 4x\) là:
-
A.
\(0\)
-
B.
\(4\)
-
C.
\(1\)
-
D.
\(2\)
Rút gọn biểu thức $\dfrac{{\sqrt {{x^2} - 6x + 9} }}{{x - 3}}$ với $x < 3$ ta được
-
A.
$ - 1$
-
B.
$ 1$
-
C.
$ 2$
-
D.
$ - 2$
Rút gọn biểu thức \(\dfrac{{\sqrt {{x^2} + 10x + 25} }}{{ - 5 - x}}\) với \(x < - 5\) ta được:
-
A.
\( - 1\)
-
B.
\(1\)
-
C.
\(2\)
-
D.
\(-2\)
Rút gọn \(A = \dfrac{{\sqrt {x - 1 - 2\sqrt {x - 2} } }}{{\sqrt {x - 2} - 1}}\) với \(x > 3\)
-
A.
\(A = \sqrt x - 2\)
-
B.
\(A = 1\)
-
C.
\(A = - 1\)
-
D.
Kết quả khác.
Tìm giá trị nhỏ nhất của biểu thức \(B = \sqrt {4{a^2} - 4a + 1} + \sqrt {4{a^2} - 12a + 9} \).
-
A.
\(2\)
-
B.
\(1\)
-
C.
\(4\)
-
D.
\(10\)
Rút gọn rồi tính giá trị biểu thức \(\sqrt {25{{\left( {4{x^2} - 4x + 1} \right)}^2}} \) tại \(x = \sqrt 3 \).
Áp dụng quy tắc về căn thức bậc hai của một bình phương, hãy rút gọn biểu thức:
a) \(\sqrt {25 - 10 + {x^2}} \) với \(x \le 5.\)
b) \(\sqrt {{{\left( {9 + 12x + 4{x^2}} \right)}^2}} \)
c) \(\sqrt {{{\left( {3x + 1} \right)}^6}} \) với \(x \ge \frac{{ - 1}}{3}\)
d) \(\sqrt {\frac{{49{x^2}{{\left( {x + 5} \right)}^2}}}{{16}}} \) với \(x \ge 0\)
Tìm x, biết:
a) \(\frac{1}{2}\sqrt x - \frac{3}{2}\sqrt {9x} + 24\sqrt {\frac{x}{{64}}} = - 17\) với \(x \ge 0\)
b) \(\sqrt {\frac{x}{5}} = 4\) với \(x \ge 0\)
c) \(\sqrt {25{x^2}} = 10\)
d) \(\sqrt {{{\left( {2x - 1} \right)}^2}} = 3\)
e) \(2 - \sqrt[3]{{5 - x}} = 0\)
Rút gọn biểu thức \(\sqrt {{{\left( { - a} \right)}^2}} - \sqrt {9{a^2}} \) với a < 0, ta có kết quả
A. – 4a
B. 2a
C. 4a
D. – 2a
Tìm giá trị nhỏ nhất của biểu thức \(A = \sqrt {{m^2} + 2m + 1} + \sqrt {{m^2} - 8m + 16} \).
-
A.
$2$
-
B.
$9$
-
C.
$5$
-
D.
$10$
Biểu thức \(\sqrt {{{\left( {3 - 2x} \right)}^2}} \) bằng
-
A.
\(3 - 2x\).
-
B.
\(2x - 3\).
-
C.
\(\left| {2x - 3} \right|\).
-
D.
\(3x - 2\) và \(2 - 3x\).