Bát giác đều ABCDEFGH nội tiếp đường tròn bán kính bằng 1. Tính độ dài cạnh AB của bát giác.
-
A.
$2 - \sqrt 2 $
-
B.
$2 + \sqrt 2 $
-
C.
$\sqrt {2 - \sqrt 2 } $
-
D.
Đáp án khác
Gọi O là tâm đường tròn ngoại tiếp bát giác đều
Vẽ BH ⊥ AO tại H
Tính BH, OH, AH
Sử dụng hệ thức lượng trong tam giác vuông $AB^2 = AH.AE$ để tính AB
Vì ABCDEFGH là bát giác đều nên góc AOB bằng \(\dfrac{{360^\circ }}{8} = 45^\circ \) và AE là đường kính của đường tròn (O) ngoại tiếp bát giác.
Vẽ BH ⊥ AO tại H thì tam giác BHO vuông cân tại H (vì có góc BOH bằng \(45^0\).
Theo định lý Pytago ta có \(B{H^2} + O{H^2} = O{B^2}\)\( \Leftrightarrow 2B{H^2} = O{B^2} \)\(\Leftrightarrow BH = \dfrac{{OB}}{{\sqrt 2 }}\)
Suy ra
$\begin{array}{l}BH = OH = \dfrac{{OB}}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }}\\AH = AO - OH = 1 - \dfrac{1}{{\sqrt 2 }}\\AE = 2AO = 2\end{array}$
Vì AE là đường kính của (O) nên ∆ ABE vuông tại B, áp dụng hệ thức lượng trong tam giác vuông ta có
$A{B^2} = AH.AE = \left( {1 - \dfrac{1}{{\sqrt 2 }}} \right).2 = 2 - \sqrt 2 $
$ \Rightarrow AB = \sqrt {2 - \sqrt 2 } $
Đáp án : C



