Cho phân số \(A = \dfrac{{n - 5}}{{n + 1}}\,\,\left( {n \in Z;n \ne - 1} \right)\)
Cho phân số \(A = \dfrac{{n - 5}}{{n + 1}}\,\,\left( {n \in Z;n \ne - 1} \right)\)
Có bao nhiêu giá trị nguyên của \(n\) để A có giá trị nguyên.
Có bao nhiêu giá trị nguyên của \(n\) để A có giá trị nguyên.
\(10\)
\(8\)
\(6\)
\(4\)
Đáp án: B
Ta biến đổi để đưa A về dạng \(A = m - \dfrac{a}{B}\) với m và a là số nguyên. Khi đó A có giá trị nguyên khi \(a\, \vdots \,B\) hay \(B \in Ư\left( a \right)\)
Ta có \(A = \dfrac{{n - 5}}{{n + 1}} = \dfrac{{n + 1 - 6}}{{n + 1}} = \dfrac{{n + 1}}{{n + 1}} - \dfrac{6}{{n + 1}} = 1 - \dfrac{6}{{n + 1}}\)
Để A có giá trị nguyên thì \(6\, \vdots \,\left( {n + 1} \right) \Rightarrow \left( {n + 1} \right) \in Ư\left( 6 \right) = \left\{ { \pm 1; \pm 2; \pm 3; \pm 6} \right\}\)
Ta có bảng sau

Vậy có 8 giá trị của n thỏa mãn là \(0; - 2;1; - 3;2; - 4;5; - 7.\)
Tìm điều kiện của n để A là phân số tối giản.
Tìm điều kiện của n để A là phân số tối giản.
\(n \ne 2k - 1\left( {k \in Z} \right)\)
\(n \ne 3k - 1\left( {k \in Z} \right)\)
\(n \ne 2k - 1\left( {k \in Z} \right)\) và \(n \ne 3k - 1\left( {k \in Z} \right)\)
\(n \ne 2k\left( {k \in Z} \right)\) và \(n \ne 3k\left( {k \in Z} \right)\)
Đáp án: C
Ta sử dụng phân số \(\dfrac{A}{B}\) tối giản khi A và B là hai số nguyên tố cùng nhau nghĩa là \(\left( {A;B} \right) = 1\)
Để A tối giản thì (n-5) và (n+1) là hai số nguyên tố cùng nhau \( \Rightarrow \left( {n - 5;n + 1} \right) = 1\)
\( \Leftrightarrow \left( {n + 1 - n + 5;n + 1} \right) = 1 \Leftrightarrow \left( {n + 1;6} \right) = 1\)
Từ đó (n+1) không chia hết cho 2 và (n+1) không chia hết cho 3
Hay \(n \ne 2k - 1\) và \(n \ne 3k - 1\,\,\left( {k \in Z} \right)\)