Đề bài

Tìm số hạng không chứa $x$ trong khai triển ${\left( {{x^2} + \dfrac{2}{x}} \right)^6}.$ 

  • A.

    ${2^4}.C_6^4.$                         

  • B.

    ${2^2}.C_6^2.$                      

  • C.

    $ - \,{2^4}.C_6^4.$                    

  • D.

    ${2^2}.C_6^6.$

Phương pháp giải

Sử dụng công thức tổng quát ${{\left( a+b \right)}^{n}}=\sum\limits_{k\,=\,0}^{n}{C_{n}^{k}}.{{a}^{n\,-\,k}}.{{b}^{k}}\,\,\xrightarrow{{}}$ Tìm hệ số của số hạng cần tìm.

Lời giải của GV Loigiaihay.com

Theo khai triển nhị thức Newton, ta có

${\left( {{x^2} + \dfrac{2}{x}} \right)^6} $ $= \sum\limits_{k\, = \,0}^6 {C_6^k} .{\left( {{x^2}} \right)^{6\, - \,k}}.{\left( {\dfrac{2}{x}} \right)^k} $ $= \sum\limits_{k\, = \,0}^6 {C_6^k} .{x^{12 - 2k}}.\dfrac{{{2^k}}}{{{x^k}}} $ $= \sum\limits_{k\, = \,0}^6 {C_6^k} {.2^k}.{x^{12\, - \,3k}}.$

Số hạng không chứa $x$ ứng với $12-3k=0\Leftrightarrow k=4\,\,\xrightarrow{{}}\,\,$Số hạng cần tìm là $C_6^4{.2^4}.$

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Tìm hệ số của ${x^{12}}$ trong khai triển ${\left( {2x - {x^2}} \right)^{10}}.$

Xem lời giải >>
Bài 2 :

Tìm số hạng chứa ${x^7}$ trog khai triển ${\left( {x - \dfrac{1}{x}} \right)^{13}}.$

Xem lời giải >>
Bài 3 :

Tìm số hạng không chứa $x$ trong khai triển ${\left( {x{y^2} - \dfrac{1}{{xy}}} \right)^8}.$

Xem lời giải >>
Bài 4 :

Cho $x$ là số thực dương. Khai triển nhị thức Newton của biểu thức ${\left( {{x^2} + \dfrac{1}{x}} \right)^{12}}$ ta có hệ số của số hạng chứa ${x^m}$ bằng $495.$ Tìm tất cả các giá trị của tham số $m.$ 

Xem lời giải >>
Bài 5 :

Hệ số của số hạng chứa \({x^{10}}\) trong khai triển nhi thức \({\left( {x + 2} \right)^n}\) biết n là số nguyên dương thỏa mãn \({3^n}C_n^0 - {3^{n - 1}}C_n^1 + {3^{n - 2}}C_n^2 - ... + {\left( { - 1} \right)^n}C_n^n = 2048\) là:

Xem lời giải >>
Bài 6 :

Hệ số của \({x^8}\) trong khai triển biểu thức \({x^2}{\left( {1 + 2x} \right)^{10}} - {x^4}{\left( {3 + x} \right)^8}\) thành đa thức bằng

Xem lời giải >>
Bài 7 :

Tìm hệ số của ${x^6}$ trong khai triển ${\left( {\dfrac{1}{x} + {x^3}} \right)^{3n\, + \,1}}$ với $x \ne 0,$ biết $n$ là số nguyên dương thỏa mãn điều kiện $3C_{n\, + 1}^2 + n{P_2} = 4A_n^2.$

Xem lời giải >>
Bài 8 :

Cho khai triển ${\left( {\sqrt {{x^3}}  + \dfrac{3}{{\sqrt[3]{{{x^2}}}}}} \right)^n}$ với $x > 0.$ Biết tổng hệ số của ba số hạng đầu tiên của khai triển là $631.$ Tìm hệ số của số hạng chứa ${x^5}.$

Xem lời giải >>
Bài 9 :

Cho $n$ là số nguyên dương thỏa mãn điều kiện $6.C_{n\, + \,1}^{n\, - \,1} = A_n^2 + 160.$ Tìm hệ số của ${x^7}$ trong khai triển $\left( {1 - 2{x^3}} \right){\left( {2 + x} \right)^n}.$ 

Xem lời giải >>
Bài 10 :

Giá trị của biểu thức \(S = {3^{99}}C_{99}^0 + {3^{98}}.4C_{99}^1 + {3^{97}}{.4^2}C_{99}^2 + ... + {3.4^{98}}C_{99}^{98} + {4^{99}}C_{99}^{99}\)\(\) bằng:

Xem lời giải >>
Bài 11 :

Giá trị của biểu thức \(S = C_{2018}^0 + 2C_{2018}^1 + {2^2}C_{2018}^2 + ... + {2^{2017}}C_{2018}^{2017} + {2^{2018}}C_{2018}^{2018}\)\(\) bằng:

Xem lời giải >>
Bài 12 :

Giá trị của biểu thức \(S = {9^{99}}C_{99}^0 + {9^{98}}C_{99}^1 + {9^{97}}C_{99}^2 + ... + 9C_{99}^{98} + C_{99}^{99}\)\(\) bằng:

Xem lời giải >>
Bài 13 :

Giá trị của biểu thức \(S = {5^n}C_n^0 - {5^{n - 1}}.2.C_n^1 + {5^{n - 2}}{.2^2}C_n^2 + ... + 5{\left( { - 2} \right)^{n - 1}}C_n^{n - 1} + {\left( { - 2} \right)^n}C_n^n\)\(\) bằng:

Xem lời giải >>
Bài 14 :

Cho biểu thức \(S = C_n^2 + C_n^3 + C_n^4 + C_n^5... + C_n^{n - 2}\). Khẳng định nào sau đây đúng?

Xem lời giải >>
Bài 15 :

Cho biểu thức \(S = C_{2017}^{1009} + C_{2017}^{1010} + C_{2017}^{1011} + C_{2017}^{1012}... + C_{2017}^{2017}\). Khẳng định nào sau đây đúng? 

Xem lời giải >>
Bài 16 :

Trong các hệ thức sau đây, hệ thức nào sai? 

Xem lời giải >>
Bài 17 :

Số nguyên dương \(n\) thỏa mãn \(C_n^0 + 2C_n^1 + {2^2}C_n^2 + {2^3}C_n^3 + ... + {2^{n - 2}}C_n^{n - 2} + {2^{n - 1}}C_n^{n - 1} + {2^n}C_n^n = 243\) là:

Xem lời giải >>
Bài 18 :

Số nguyên dương \(n\) thỏa mãn \(C_n^0.C_{n + 1}^n + C_n^1.C_{n + 1}^{n - 1} + C_n^2.C_{n + 1}^{n - 2} + ... + C_n^{n - 1}.C_{n + 1}^1 + C_n^n.C_{n + 1}^0 = 1716\) là:

Xem lời giải >>
Bài 19 :

Rút gọn tổng sau: \(S = C_n^1 + 2C_n^2 + 3C_n^3 + ... + nC_n^n\) ta được:

Xem lời giải >>
Bài 20 :

Tổng các hệ số của tất cả các số hạng trong khai triển nhị thức \({\left( {x - 2y} \right)^{2020}}\) là:

Xem lời giải >>