Một vật dao động điều hòa với biên độ $A = 8cm$ và $ω = π rad/s$. Tại thời điểm ban đầu vật qua vị trí có li độ \({x_0} = {\text{ }}4cm\) theo chiều âm. Phương trình dao động của vật là:
-
A.
\(x = 8cos\left( {\pi t - \frac{\pi }{3}} \right)\left( {cm} \right)\)
-
B.
\(x = 8cos\left( {\pi t - \frac{{2\pi }}{3}} \right)(cm)\)
-
C.
\(x = 8cos\left( {\pi t + \frac{\pi }{3}} \right)\left( {cm} \right)\)
-
D.
\(x = 8cos\left( {\pi t + \frac{{2\pi }}{3}} \right)\left( {cm} \right)\)
Xác định pha ban đầu: Tại $t=0$: \(\left\{ \begin{array}{l}x = Ac{\rm{os}}\varphi \\{\rm{v = - A}}\omega {\rm{sin}}\varphi \end{array} \right. \to \left\{ \begin{array}{l}{\rm{cos}}\varphi {\rm{ = }}\frac{{{x_0}}}{A}\\\sin \varphi = - \frac{v}{{A\omega }}\end{array} \right. \to \varphi = ?\)
Ta có A =8cm, ω = π rad/s
Tại t = 0: \(\left\{ \begin{array}{l}x = Ac{\rm{os}}\varphi = 4\\{\rm{v = - A}}\omega {\rm{sin}}\varphi < 0\end{array} \right. \to \left\{ \begin{array}{l}{\rm{cos}}\varphi {\rm{ = }}\frac{{{x_0}}}{A} = \frac{4}{8} = \frac{1}{2}\\\sin \varphi > 0\end{array} \right. \to \varphi = \frac{\pi }{3}\)
=> x =8cos(πt +π/3)(cm)
Đáp án : C



