Đề bài

Tính tổng \(T\) tất cả các nghiệm của phương trình \({4.9^x} - {13.6^x} + {9.4^x} = 0\).

  • A.

    \(T = 2\).

  • B.

    \(T = 3\).

  • C.

    \(T = \dfrac{{13}}{4}\).

  • D.

    \(T = \dfrac{1}{4}\).

Phương pháp giải

- Chia cả hai vế cho $9^x$.

- Giải phương trình bậc hai ẩn ${\left( {\dfrac{2}{3}} \right)^x}$.

Lời giải của GV Loigiaihay.com

\(\begin{array}{l}{4.9^x} - {13.6^x} + {9.4^x} = 0 \Leftrightarrow 4 - 13.{\left( {\dfrac{2}{3}} \right)^x} + 9.{\left( {\dfrac{2}{3}} \right)^{2x}} = 0 \Leftrightarrow \left[ \begin{array}{l}{\left( {\dfrac{2}{3}} \right)^x} = 1\\{\left( {\dfrac{2}{3}} \right)^x} = \dfrac{4}{9}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right. \Rightarrow T = 0 + 2 = 2\end{array}\)

Đáp án : A

Chú ý

Các em cũng có thể đặt $t={\left( {\dfrac{2}{3}} \right)^x}$ để tiện trình bày, tránh nhầm lẫn khi tính toán.