Ta sẽ "lập luận" bằng quy nạp toán học để chỉ ra rằng: “Mọi con mèo đểu có cùngmàu”. Ta gọi P(n) với n nguyên dương là mệnh để sau: “Mọi con mèo trong một đàn gồmn con đều có cùng màu”.
Bưóc 1. Với n = 1 thì mệnh để P(1) là “Mọi con mẻo trong một đàn gồm 1 con đểu có cùng màu”. Hiển nhiên mệnh để này là đúng!
Bước 2. Giả sử P(k) đúng với một số nguyên dương k nào đó. Xét một đàn mèo gồm k + 1 con. Gọi chúng là \({M_1},{M_2},...,{M_{k + 1}}\). Bỏ con mèo \({M_{k + 1}}\) ra khỏi đàn, ta nhận được một đàn mèo gồm k con là \({M_1},{M_2},...,{M_k}\). Theo giả thiết quy nạp, các con mèo có cùng màu. Bây giờ, thay vì bỏ con mèo \({M_{k + 1}}\) ta bỏ con mèo \({M_1}\) để có đàn mèo gồm k con là \({M_2},{M_3},...,{M_{k + 1}}\). Vẫn theo giả thiết quy nạp thì các con mèo \({M_2},{M_3},...,{M_{k + 1}}\) có cùng màu. Cuối cùng, đưa con mèo \({M_1}\) trở lại đàn để có đàn mèo ban đầu. Theo các lập luận trên: các con mèo \({M_1},{M_2},...,{M_k}\) có cùng màu và các con mèo \({M_2},{M_3},...,{M_{k + 1}}\) có cùng màu. Từ đó suy ra tất cả các con mèo \({M_1},{M_2},...,{M_{k + 1}}\) đều có cùng màu.
Vậy, theo nguyên lí quy nạp thì P(n) đúng với mọi số nguyên dương n. Nói riêng, nếu gọi N là số mèo hiện tại trên Trái Đất thì việc P(N) đúng cho thấy tất cả các con mèo (trênTrái Đất) đều có cùng màu!
Tất nhiên là ta có thể tỉm được các con mèo khác màu nhau! Theo em thì "lập luận" trên đây sai ở chỗ nào?
Chứng minh mệnh đề đúng với \(n \ge p\) thì:
Bước 1: Kiểm tra mệnh đề là đúng với \(n = p\).
Bước 2: Giả thiết mệnh đề đúng với số tự nhiên \(n = k \ge p\) và chứng minh mệnh đề đúng với \(n = k + 1\). Kết luận.
Lập luận trên sai ở Bước 2.
Cụ thể k = 1, xét đàn mèo gồm k + 1 tức là 2 con. Gọi chúng là \({M_1},{M_2}\). Ở bước 2 ta chỉ ra 2 con mèo này luôn cùng màu dựa trên giả thiết P(1) đúng.
Bỏ con mèo \({M_2}\) ra khỏi đàn, ta nhận được một đàn mèo gồm 1 con là \({M_1}\). Theo giả thiết quy nạp, 1 con mèo này có cùng màu. Bây giờ, thay vì bỏ con mèo \({M_2}\) ta bỏ con mèo \({M_1}\) để có đàn mèo gồm 1 con là \({M_2}\). Vẫn theo giả thiết quy nạp thì các con mèo \({M_2}\) có cùng màu. Cuối cùng, đưa con mèo \({M_1}\) trở lại đàn để có đàn mèo ban đầu.
Nhưng theo các lập luận trên ta không suy ra được các con mèo \({M_1},{M_2}\) có cùng màu (vì không có con mèo cùng màu chung mà mỗi con chỉ cùng màu với chính nó).
Bước 2 sai do \(\{ {M_1},{M_2},...,{M_k}\} \cap \left\{ {{M_2},{M_3},...,{M_{k + 1}}} \right\}\) có thể bằng rỗng (khi k =2) nên không thể suy ra tất cả các con mèo \({M_1},{M_2},...,{M_{k + 1}}\) đều có cùng màu.
Các bài tập cùng chuyên đề
Chứng minh rằng với mọi số tự nhiên \(n \ge 2\) ta có đẳng thức:
\({a^n} - {b^n} = (a - b)({a^{n - 1}} + {a^{n - 2}}b + ... + a{b^{n - 2}} + {b^{n - 1}})\).
Chứng minh rằng với mọi số tự nhiên \(n \ge 1\) ta có:
\(1 + 2 + 3 + ... + n = \frac{{n(n + 1)}}{2}\).
Xét đa thức \(p(n) = {n^2} - n + 41.\)
a) Hãy tính p(1), p(2), p(3), p(4), p(5) và chứng tỏ rằng các kết quả nhận được đều là số nguyên tố.
b) Hãy đưa ra một dự đoán cho p(n) trongg trường hợp tổng quát.
Hãy quan sát các đẳng thức sau:
\(1 = {1^2}\)
\(1 + 3 = 4 = {2^2}\)
\(1 + 3 + 5 = 9 = {3^2}\)
\(1 + 3 + 5 + 7 = 16 = {4^2}\)
\(1 + 3 + 5 + 7 + 9 = 25 = {5^2}\)
……
Có nhận xét gì về các số ở vế trái và ở vế phải của các đẳng thức trên? Từ đó hãy dự đoán công thức tính tổng của n số lẻ đầu tiên
\(1 + 3 + 5 + ... + (2n - 1).\)
Lãi suất gửi tiết kiệm trong ngân hàng thường được tính theo thể thức lãi kép theo định kì. Theo thể thức này, nếu đến kì hạn người gửi không rút lãi ra thì tiền lãi được tính vào vốn của kì kế tiếp. Giả sử một người gửi số tiền A với lãi suất r không đổi trong mỗi kì.
a) Tính tổng số tiền (cả vốn lẫn lãi) \({T_1},{T_2},{T_3}\) mà người đó nhận được sau kì thứ 1, sau kì thứ 2 và sau kì thứ 3.
b) Dự đoán công thức tổng số tiền (cả vốn lẫn lãi) \({T_n}\) mà người đó thu được sau n kì. Hãy chứng minh công thức nhận được đó bằng quy nạp.
Sử dụng phương pháp quy nạp toán học, chứng minh các đẳng thức sau đúng với mọi số tự nhiên \(n \ge 1\).
a) \(2 + 4 + 6 + ... + 2n = n(n + 1)\).
b) \({1^2} + {2^2} + {3^2} + ... + {n^2} = \frac{{n(n + 1)(2n + 1)}}{6}\).
Mỗi khẳng định sau là đúng hay sai? Nếu em nghĩ là đúng, hãy chứng minh nó. Nếu em nghĩ nó sai, hãy đưa ra một phản ví dụ.
a) \(p(n) = {n^2} - n + 11\) là số nguyên tố với mọi số tự nhiên n.
b) \({n^2} > n\) với mọi số tự nhiên \(n \ge 2\).
Chứng minh rằng \({n^3} - n + 3\) chia hết cho 3 với mọi số tự nhiên \(n \ge 1\).
Chứng minh rằng \({n^2} - n + 41\) là số lẻ với mọi số nguyên dương n.
Chứng minh rằng nếu \(x > - 1\) thì \({(1 + x)^n} \ge 1 + nx\) với mọi số tự nhiên n.
Cho tổng \({S_n} = \frac{1}{{1.2}} + \frac{1}{{2.3}} + ... + \frac{1}{{n(n + 1)}}\).
a) Tính \({S_1},{S_2},{S_3}.\)
b) Dự đoán công thức tính tổng \({S_n}\) và chứng minh bằng quy nạp.
Sử dụng phương pháp quy nạp toán học, chứng minh rằng số đường chéo của một đa giác n cạnh (\(n \ge 4\)) là \(\frac{{n(n - 3)}}{2}\).
Chứng minh rằng với mọi số tự nhiên \(n \ge 1\), ta có:
\({2.2^1} + {3.2^2} + {4.2^3} + ... + (n + 1){.2^n} = n{.2^{n + 1}}\).
Đặt \({S_n} = \frac{1}{{1.3}} + \frac{1}{{3.5}} + ... + \frac{1}{{(2n - 1)(2n + 1)}}\).
a) Tính \({S_1},{S_2},{S_3}\).
b) Dự đoán công thức tính tổng \({S_n}\) và chứng minh nó bằng quy nạp.
Chứng minh rằng với mọi số tự nhiên n, ta có \({10^{2n + 1}} + 1\) chia hết cho 11.
Chứng minh rằng với mọi số tự nhiên \(n \ge 2\), ta có \({5^n} \ge {3^n} + {4^n}\).
Chứng minh:
a) \(\frac{1}{{\sqrt 1 + \sqrt 2 }} + \frac{1}{{\sqrt 2 + \sqrt 3 }} + ... + \frac{1}{{\sqrt n + \sqrt {n + 1} }} = \sqrt {n + 1} - 1\) với mọi \(n \in \mathbb{N}*\).
b) \(\frac{{{2^3} - 1}}{{{2^3} + 1}}.\frac{{{3^3} - 1}}{{{3^3} + 1}}.\frac{{{4^3} - 1}}{{{4^3} + 1}}...\frac{{{n^3} - 1}}{{{n^3} + 1}} = \frac{{2({n^2} + n + 1)}}{{3n(n + 1)}}\) với mọi \(n \in \mathbb{N}*,n \ge 2\).
Xét mệnh đề chứa biến P(n): “\(1 + 3 + 5 + ... + (2n - 1) = {n^2}\)” với n là số nguyên dương.
a) Chứng tỏ rằng P(1) là mệnh đề đúng.
b) Với k là một số nguyên dương tùy ý mà P(k) là mệnh đề đúng, cho biết \(1 + 3 + 5 + ... + (2k - 1)\) bằng bao nhiêu.
c) Với k là một số nguyên dương tùy ý mà P(k) là mệnh đề đúng, chứng tỏ rằng P(k+1) cũng là mệnh đề đúng bằng cách chỉ ra \({k^2} + [2(k + 1) - 1] = {(k + 1)^2}\).
Chia hình vuông cạnh 1 thành 4 hình vuông nhỏ bằng nhau, lấy ra hình vuông nhỏ thứ nhất (ở góc dưới bên trái, màu đỏ), cạnh của hình vuông đó bằng \(\frac{1}{2}.\)
Chia hình vuông nhỏ ở góc trên bên phải thành bốn hình vuông bằng nhau, lấy ra hình vuông nhỏ thứ hai (màu đỏ), cạnh của hình vuông đó bằng \(\frac{1}{4}.\)
Tiếp tục quá trình trên ta được dãy các hình vuông nhỏ (màu đỏ) ở hình 1.
Cạnh của hình vuông nhỏ thứ n (màu đỏ) bằng bao nhiêu? Vì sao?
Cho \({S_n} = 1 + 2 + {2^2} + ... + {2^n}\) và \({T_n} = {2^{n + 1}} - 1\), với \(n \in \mathbb{N}*\).
a) So sánh \({S_1}\) và \({T_1}\); \({S_2}\) và \({T_2}\);\({S_3}\) và \({T_3}\).
b) Dự đoán công thức tính \({S_n}\) và chứng minh bằng phương pháp quy nạp toán học.
Cho \({S_n} = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{2^n}}}\) và \({T_n} = 2 - \frac{1}{{{2^n}}}\), với \(n \in \mathbb{N}*\).
a) So sánh \({S_1}\) và \({T_1}\); \({S_2}\) và \({T_2}\); \({S_3}\) và \({T_3}\).
b) Dự đoán công thức tính \({S_n}\) và chứng minh bằng phương pháp quy nạp toán học.
Cho \({S_n} = \frac{1}{{1.5}} + \frac{1}{{5.9}} + \frac{1}{{9.13}} + ... + \frac{1}{{(4n - 3)(4n + 1)}}\) với \(n \in \mathbb{N}*\).
a) Tính \({S_1}\); \({S_2}\);\({S_3}\); \({S_4}\).
b) Dự đoán công thức tính \({S_n}\) và chứng minh bằng phương pháp quy nạp toán học.
Cho q là số thực khác 1. Chứng minh: \(1 + q + {q^2} + ... + {q^{n - 1}} = \frac{{1 - {q^n}}}{{1 - q}}\) với mọi \(n \in \mathbb{N}*\).
Chứng minh với mọi \(n \in \mathbb{N}^*\), ta có:
a) \({13^n} - 1\) chia hết cho 6.
b) \({4^n} + 15n - 1\) chia hết cho 9.
Chứng minh \({n^n} > {(n + 1)^{n - 1}}\) với mọi \(n \in \mathbb{N}*,n \ge 2\).
Chứng minh \({a^n} - {b^n} = (a - b)({a^{n - 1}} + {a^{n - 2}}b + ... + a{b^{n - 2}} + {b^{n - 1}})\) với mọi \(n \in \mathbb{N}*\).
Cho tam giác đều màu xanh (Hình thứ nhất).
a) Nêu quy luật chọn tam giác đều màu trắng ở Hình thứ hai.
b) Nêu quy luật chọn các tam giác đều màu trắng ở Hình thứ ba.
c) Nêu quy luật chọn các tam giác đều màu trắng từ Hình thứ tư và các tam giác đều màu trắng ở những hình sau đó.
d) Tính số tam giác đều màu xanh lần lượt trong các Hình thứ nhất, Hình thứ hai, Hình thứ ba.
e) Dự đoán số tam giác đều màu xanh trong Hình thứ n. Chứng minh kết quả đó bằng phương pháp quy nạp toán học.
Quan sát Hình 6.
a) Nêu quy luật sắp xếp các chấm đỏ và vàng xen kẽ nhau khi xếp các chấm đó từ góc trên bên trái xuống góc dưới bên phải (tạo thành hình vuông).
b) Giả sử hình vuông thứ n có mỗi cạnh chứa n chấm. Tính tổng số chấm được xếp trong hình vuông (kể cả trên cạnh). Chứng minh kết quả đó bằng phương pháp quy nạp toán học.
Giả sử năm đầu tiên, cô Hạnh gửi vào ngân hàng A (đồng) với lãi suất r%/ năm. Hết năm đầu, cô Hạnh không rút tiền ra và gửi thêm A (đồng) nữa. Hết năm thứ hai, cô Hạnh cũng không rút tiền ra và lại gửi thêm A (đồng) nữa. Cứ tiếp tục như vậy cho những năm sau. Chứng minh số tiền cả vốn lẫn lãi mà cô Hạnh có được sau n (năm) là \({T_n} = \frac{{A(100 + r)}}{r}\left[ {{{\left( {1 + \frac{r}{{100}}} \right)}^n} - 1} \right]\) (đồng), nếu trong khoảng thời gian này lãi suất không đổi.
Một người gửi số tiền A (đồng) vào ngân hàng. Biểu lãi suất của ngân hàng như sau:
Chia mỗi năm thành m kì hạn và lãi suất r%/ năm. Biết rằng nếu không rút tiền ra khỏi ngân hàn thì cứ sau mỗi kì hạn, số tiền lãi sẽ được nhập vào vốn ban đầu. Chứng minh số tiền nhận được (bao gồm cả vốn lẫn lãi) sau n (năm) gửi là \({S_n} = A.{\left( {1 + \frac{r}{{100m}}} \right)^{m.n}}\) (đồng), nếu trongg khoảng thời gian này người gửi không rút tiền ra và lãi suất không thay đổi.