Trong mặt phẳng tọa độ Oxy, xét các phép biến hình sau đây:
– Phép biến hình f biến mỗi điểm M(x; y) thành điểm M’(–x; –y);
– Phép biến hình g biến mỗi điểm M(x; y) thành điểm M’(2x; 2y).
Trong hai phép biến hình trên, phép nào là phép dời hình? Giải thích.
Phép dời hình là phép biến hình bảo toàn khoảng cách (không làm thay đổi khoảng cách) giữa 2 điểm bất kì.
Lấy hai điểm bất kì \(M({x_1};{\rm{ }}{y_1});\,\,N({x_2};{\rm{ }}{y_2}).\)
Suy ra \(MN = \sqrt {{{\left( {{{\rm{x}}_2} - {{\rm{x}}_1}} \right)}^2} + {{\left( {{{\rm{y}}_2} - {{\rm{y}}_1}} \right)}^2}} \)
– Ta có ảnh của M, N qua phép biến hình f lần lượt là \(M'(-{x_1};{\rm{ }}-{y_1}),{\rm{ }}N'(-{x_2};{\rm{ }}-{y_2}).\)
Khi đó \({\rm{M'N'}} = \sqrt {{{\left( { - {{\rm{x}}_2} + {{\rm{x}}_1}} \right)}^2} + {{\left( { - {{\rm{y}}_2} + {{\rm{y}}_1}} \right)}^2}} = \sqrt {{{\left( {{{\rm{x}}_2} - {{\rm{x}}_1}} \right)}^2} + {{\left( {{{\rm{y}}_2} - {{\rm{y}}_1}} \right)}^2}} = MN\)
Vì vậy f là một phép dời hình.
– Ta có ảnh của M, N qua phép biến hình g lần lượt là \(M'(2{x_1};{\rm{ }}2{y_1}),{\rm{ }}N'(2{x_2};{\rm{ }}2{y_2}).\)
Khi đó \({\rm{M'N'}} = \sqrt {{{\left( {2{{\rm{x}}_2} - 2{{\rm{x}}_1}} \right)}^2} + {{\left( {2{{\rm{y}}_2} - 2{{\rm{y}}_1}} \right)}^2}} = \sqrt {4{{\left( {{{\rm{x}}_2} - {{\rm{x}}_1}} \right)}^2} + 4{{\left( {{{\rm{y}}_2} - {{\rm{y}}_1}} \right)}^2}} \)
\( = 2\sqrt {{{\left( {{{\rm{x}}_2} - {{\rm{x}}_1}} \right)}^2} + {{\left( {{{\rm{y}}_2} - {{\rm{y}}_1}} \right)}^2}} = 2MN \ne MN\)
Vì vậy g không phải là một phép dời hình.
Vậy trong hai phép biến hình đã cho, phép dời hình là f.

Các bài tập cùng chuyên đề
Cho đường thẳng d và hai điểm A, B cùng thuộc một nửa mặt phẳng bờ d. Hai điểm E, F thay đổi trên d sao cho \(\overrightarrow {EF} \) không đổi. Xác định vị trí của hai điểm E, F để AE + BF nhỏ nhất.
Cho nửa đường tròn tâm O, đường kính AB và điểm M trên nửa đường tròn đó. Dựng về phía ngoài của tam giác ABM tam giác AMN vuông cân tại M. Chứng minh rằng khi M thay đổi trên nửa đường tròn thì điểm N luôn thuộc một nửa đường tròn cố định.
Nghệ thuật cắt giấy Kirigami của Nhật Bản đã sử dụng rất nhiều phép đối xứng khi cắt để tạo ra các hình đẹp. Hãy tìm trục đối xứng và tâm đối xứng của các hình trong Hình 13.

Vận dụng phép đối xứng tâm và đối xứng trục để cắt hoa văn trang trí theo hướng dẫn sau:
– Lấy một tờ giấy hình vuông, gấp đôi, gấp tư rồi gấp làm tám (Hình 14a).
– Vẽ hoa và lá trên bề mặt tam giác (Hình 14b).
– Dùng kéo cắt theo đường đã vẽ (Hình 14c).
– Trải phẳng tờ giấy ra để thấy hoa văn trang trí gồm hoa và lá (Hình 14d).
Tìm tâm đối xứng và trục đối xứng của hoa văn vừa làm.

Trong hình bên dưới, tìm các cặp hình có hình dạng giống nhau. Loại phép biến hình nào có thể biến hình này thành hình kia trong mỗi cặp?

Cho Hình 1.
a) Tìm phép biến hình f biến hình (A) thành hình (B).
b) Tìm phép biến hình g biến hình (A) thành hình (C).
c) Tìm các phép biến hình biến hình (D) thành lần lượt các hình (E), (F), (G).




Danh sách bình luận