Tính chiều dài và chiều rộng của một hình chữ nhật, biết hình chữ nhật có chu vi bằng 340 m và diện tích bằng 7200\({m^2}\).
Áp dụng cách tìm hai số khi biết tổng và tích của chúng theo định lí Viète.
Nếu hai số có tổng là S và tích là P thì chúng là nghiệm của phương trình \({X^2} - SX + P = 0\).
Giải phương trình để tìm chiều dài và chiều rộng (lưu ý chiều dài > chiều rộng).
Vì chu vi hình chữ nhật là 340 m nên tổng của chiều dài và chiểu rộng là \(340:2 = 170\left( m \right)\).
Vì diện tích hình chữ nhật là 7200 \({m^2}\) nên tích của chiều dài và chiều rộng là 7200 \(\left( {{m^2}} \right)\)
Vì tổng của chiều dài và chiều rộng là 170 và tích của chúng bằng 7200 nên chiều dài và chiều rộng là hai nghiệm của phương trình \({X^2} - 170X + 7200 = 0\)
Giải phương trình ta được \({X_1} = 80;{X_2} = 90\)
Vì chiều dài lớn hơn chiều rộng nên chiều dài bằng 90m, chiều rộng bằng 80m.
Vậy hình chữ nhật có chiều dài bằng 90 m và chiều rộng bằng 80 m.
Lý thuyết liên quan: Bài toán này được giải quyết bằng cách áp dụng định lí Viète. Định lí Viète nêu rằng nếu hai số có tổng là S và tích là P, thì chúng là nghiệm của phương trình bậc hai \({X^2} - SX + P = 0\).
Lý thuyết ứng dụng vào câu hỏi:
- Nửa chu vi của hình chữ nhật chính là tổng của chiều dài và chiều rộng. Ta có tổng S của hai số cần tìm (chiều dài và chiều rộng).
- Diện tích của hình chữ nhật bằng 7200 \({m^2}\). Ta có tích P của hai số cần tìm.
- Theo định lí Viète, ta lập được phương trình \({X^2} - 170X + 7200 = 0\).
- Giải phương trình này, ta tìm được hai nghiệm là \({X_1} = 80\) và \({X_2} = 90\). Dựa vào điều kiện chiều dài lớn hơn chiều rộng, ta xác định chiều dài bằng 90m và chiều rộng bằng 80m.
Phương pháp giải chung cho dạng bài này: Đối với bài toán tìm kích thước (chiều dài và chiều rộng) của hình chữ nhật khi biết chu vi và diện tích:
- Bước 1: Tính nửa chu vi của hình chữ nhật. Nửa chu vi này chính là tổng (S) của chiều dài và chiều rộng.
- Bước 2: Diện tích của hình chữ nhật chính là tích (P) của chiều dài và chiều rộng.
- Bước 3: Áp dụng định lí Viète, chiều dài và chiều rộng là nghiệm của phương trình bậc hai có dạng \({X^2} - SX + P = 0\), trong đó S là tổng (nửa chu vi) và P là tích (diện tích) đã tính ở trên.
- Bước 4: Giải phương trình bậc hai để tìm hai nghiệm. Hai nghiệm này chính là chiều dài và chiều rộng của hình chữ nhật.
- Bước 5: So sánh hai nghiệm và xác định chiều dài (thường là giá trị lớn hơn) và chiều rộng (thường là giá trị nhỏ hơn hoặc bằng).
Các bài tập cùng chuyên đề
Biết rằng phương trình \({x^2} - \left( {2a - 1} \right)x - 4a - 3 = 0\) luôn có hai nghiệm ${x_1};{x_2}$ với mọi $a$. Tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào \(a\).
-
A.
$2\left( {{x_1} + {x_2}} \right) - {x_1}{x_2} = 5$
-
B.
$2\left( {{x_1} + {x_2}} \right) - {x_1}{x_2} = - 5$
-
C.
$2\left( {{x_1} + {x_2}} \right) + {x_1}{x_2} = 5$
-
D.
$2\left( {{x_1} + {x_2}} \right) + {x_1}{x_2} = - 5$
Vuông nói: Hãy tìm một phương trình bậc hai mà tổng và tích các nghiệm của phương trình là hai số đối nhau.
Tròn nói: Tớ tìm ra rồi! Đó là phương trình \({x^2} + x + 1 = 0\).
Em có đồng ý với ý kiến của Tròn không? Vì sao?
Giả sử hai số có tổng \(S = 5\) và tích \(P = 6\). Thực hiện các bước sau để lập phương trình bậc hai nhận hai số đó làm nghiệm.
a) Gọi một số là x. Tính số kia theo x.
b) Sử dụng kết quả câu a và giả thiết, hãy lập phương trình để tìm x.
Tìm hai số biết tổng của chúng bằng \( - 11\), tích của chúng bằng 28.
Tìm hai số u và v, biết:
a) \(u + v = 20,uv = 99\);
b) \(u + v = 2,uv = 15\).
Một bể bơi hình chữ nhật có diện tích \(300{m^2}\) và chu vi là 74m. Tính các kích thước của bể bơi này.
Chiều dài và chiều rộng của hình chữ nhật có chu vi 20cm và diện tích \(24c{m^2}\) là
A. 5cm và 4cm.
B. 6cm và 4cm.
C. 8cm và 3cm.
D. 10cm và 2cm.
Tìm hai số u và v, biết:
a) \(u + v = 13\) và \(uv = 40\);
b) \(u - v = 4\) và \(uv = 77\).
Tìm hai số u và v, biết:
a) \(u + v = 15,uv = 56\);
b) \({u^2} + {v^2} = 125,uv = 22\).
Cho hai số u và v có tổng u + v = 8 và tích uv = 15.
a) Từ u + v = 8, biểu diễn u theo v rồi thay vào uv = 15, ta nhận được phương trình ẩn v nào?
b) Nếu biểu diễn v theo u thì nhận được phương trình ẩn u nào?
a) Tìm hai số, biết tổng của chúng bằng 15 và tích của chúng bằng 44.
b) Có tồn tại hai số a và b có tổng bằng 7 và tích bằng 13 không?
Tìm chiều dài và chiều rộng trong Hoạt động khởi động (trang 18).
Khu vườn nhà kính hình chữ nhật của bác Thanh có nửa chu vi là 60 m, diện tích 884 m2. Làm thế nào để tính chiều dài và chiều rộng của khu vườn?
Tìm hai số u và v (nếu có) trong mỗi trường hợp sau:
a) u + v = 29, uv = 154
b) u + v = -6, uv = -135
c) u + v = 5, uv = 24
Một mảnh vườn hình chữ nhật chu vi là 116 m, diện tích 805 m2. Tìm chiều dài và chiều rộng của mảnh vườn đó?
Tìm hai số u và v (nếu có) trong mỗi trường hợp sau:
a) u + v = -2, uv = -35
b) u + v = 8, uv = -105
Giải bài toán ở phần mở đầu:
Đà Lạt là thành phố du lịch, có khí hậu rất mát mẻ. Nơi đây trồng rất nhiều loại hoa. Để trồng hoa, người ta thường tạo các nhà kính được bao quanh bởi hàng rào dạng hình chữ nhật và tạo mái che bên trên. Giả sử một nhà kính có độ dài các hàng rào bao quanh là 68m, diện tích trồng hoa là 240m2. Xác định chiều dài và chiều rộng của nhà kính.
Cho hai số có tổng bằng 5 và tích bằng 6.
a) Gọi một số là x. Tính số còn lại theo x.
b) Lập phương trình bậc hai ẩn x.
Tìm hai số trong mỗi trường hợp sau:
a) Tổng của chúng bằng 7 và tích của chúng bằng 12.
b) Tổng của chúng bằng 1 và tích của chúng bằng -6.
Tìm hai số biết tổng của chúng bằng \(4\sqrt 2 \) và tích của chúng bằng 6.
Hiện nay, tổng số tuổi của hai em Trọng và Nhân là 13. Gọi x là số tuổi hiện nay của Nhân (x là số nguyên dương).
a) Hãy biểu diễn số tuổi của Trọng và tích số tuổi của hai em hiện nay theo x.
b) Biết tích số tuổi hai em hiện nay là 40, hãy lập phương trình biểu thị thông tin này.
Tìm hai số, biết tổng và tích của chúng lần lượt bằng:
a) 2 và – 15
b) 3 và 5
Hãy trả lời câu hỏi phần khởi động:
Trong mảnh đất của mình, bác Thiện muốn dành một phần đất hình chữ nhật có diện tích 24 m2 để trồng hoa. Bác Thiện đang có 20 m lưới để rào xung quanh phần đất trồng hoa đó. Vậy bác Thiện nên chọn kích thước phần đất trồng hoa như thế nào để dùng vừa hết 20 m lưới?
Tìm hai số u và v trong mỗi trường hợp sau:
a) u + v = 35, uv = 276
b) y + v = -13, uv = -68
c) u + v = 3, uv = 11.
Một hình hộp chữ nhật có chiều cao là 5 dm, diện tích xung quanh bằng 100 dm2 và thể tích bằng 120 dm3. Tính chiều dài và chiều rộng của hình hộp chữ nhật đã cho.
Tìm hai số u,v trong mỗi trường hợp sau:
a) u + v = 14, uv = 45 và u < v
b) u + v = 2, uv = 5.
Hai số u,v thoả mãn u + v = 19 và uv = 48 là các nghiệm của phương trình
A. \({t^2} + 19t + 48 = 0\)
B. \({t^2} + 19t - 48 = 0\)
C. \({t^2} - 19t + 48 = 0\)
D. \({t^2} - 48t + 19 = 0\)
Tìm hai số u và v, biết:
a) \(u + v = 17,uv = 72\);
b) \({u^2} + {v^2} = 73,uv = 24\).
Dùng định lí Viète, tính nhẩm nghiệm của các phương trình sau:
a) \({x^2} - 8x + 15 = 0\);
b) \({x^2} + 5x + 6 = 0\).
Bác Long có 48 mét lưới thép. Bác muốn dùng để rào xung quanh một mảnh đất trống (đủ rộng) thành một mảnh vườn hình chữ nhật để trồng rau.
a) Biết diện tích của mảnh vườn là \(108{m^2}\), hãy tính chiều dài và chiều rộng của mảnh vườn.
b) Hỏi diện tích lớn nhất của mảnh vườn mà bác Long có thể rào được là bao nhiêu mét vuông?
Tìm hai số u và v, biết:
a) \(u - v = 2,uv = 255\);
b) \({u^2} + {v^2} = 346,uv = 165\).