Đề bài

Cho đa thức \(A\left( x \right) = 6{x^3} - 7{x^2} - x + m\) và \(B\left( x \right) = 2x + 1\)

a) Thực hiện phép chia \(A\left( x \right)\) cho \(B\left( x \right)\).

b) Tìm giá trị của \(m\) để phép chia trên có dư là \(4\).

 

Phương pháp giải

Với hai đa thức một biến \(A\) và \(B\)(\(B\) khác đa thức \(0\)) tuỳ ý. Tồn tại hai đa thức duy nhất \(Q\) và \(R\) sao cho:

\(A = B.Q + R\) trong đó bậc của \(R\) thấp hơn bậc của \(B\)

 A: đa thức bị chia

 B: Đa thức chia

 Q: Đa thức thương

 \(R\): Đa thức dư

 

Lời giải của GV Loigiaihay.com

a) Ta thực hiện phép chia \(A\left( x \right):B\left( x \right)\)

 

Vậy \(\left( {6{x^3} - 7{x^2} - x + m} \right):\left( {2x + 1} \right)\) được thương là \(3{x^2} - 5x + 2\) dư \(m - 2\)

b) Để \(A\left( x \right):B\left( x \right)\) dư \(4\) thì \(m - 2 = 4 \Leftrightarrow m = 6\)

Vậy khi \(m = 6\) thì \(A\left( x \right):B\left( x \right)\) dư \(4\).