Đề bài

Tìm \(x\) biết:

a) \(\dfrac{{5x - 2}}{3} = \dfrac{{ - 3}}{4}\)

b) \(\left( {{x^2} - \dfrac{1}{4}} \right).\left( {x + \dfrac{2}{5}} \right) = 0\)

 

Phương pháp giải

a) Vận dụng định nghĩa hai phân số bằng nhau: Nếu \(\dfrac{a}{b} = \dfrac{c}{d}\) thì \(ad = bc\).

b) Phương trình \(A\left( x \right).B\left( x \right) = 0\) , chia hai trường hợp để giải:

+ Trường hợp 1: \(A\left( x \right) = 0\)

+ Trường hợp 2: \(B\left( x \right) = 0\)

 

Lời giải của GV Loigiaihay.com

a) \(\dfrac{{5x - 2}}{3} = \dfrac{{ - 3}}{4}\)

\(\begin{array}{l}4.\left( {5x - 2} \right) = \left( { - 3} \right).3\\20x - 8 =  - 9\\20x =  - 9 + 8\\20x =  - 1\\x = \dfrac{{ - 1}}{{20}}\end{array}\)

Vậy \(x = \dfrac{{ - 1}}{{20}}\)

b) \(\left( {{x^2} - \dfrac{1}{4}} \right).\left( {x + \dfrac{2}{5}} \right) = 0\)

Trường hợp 1:

\(\begin{array}{l}{x^2} - \dfrac{1}{4} = 0\\{x^2} = \dfrac{1}{4} = {\left( { \pm \dfrac{1}{2}} \right)^2}\\ \Rightarrow x = \dfrac{1}{2};x =  - \dfrac{1}{2}\end{array}\)

Trường hợp 2:

\(\begin{array}{l}x + \dfrac{2}{5} = 0\\x = \dfrac{{ - 2}}{5}\end{array}\)

Vậy \(x = \dfrac{1}{2};x =  - \dfrac{1}{2};x = \dfrac{{ - 2}}{5}\)