Cho tam giác nhọn ABC, các đường cao AD, BE, CF cắt nhau tại H. Chứng minh rằng:
a) \(AD.BH = AC.BD\).
b) \(HA.HD = HB.HE = HC.HF\).
c) \(B{C^2} = BE.BH + CF.CH\).
Sử dụng kiến thức về trường hợp đồng dạng thứ ba của hai tam giác (g.g) để tính: Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng với nhau.
a) Tam giác ADC và tam giác BDH có:
\(\widehat {ADC} = \widehat {BDH} = {90^0},\widehat {DAC} = \widehat {HBD}\) (cùng phụ với góc ECB). Do đó, $\Delta ADC\backsim \Delta BDH\left( g.g \right)$, suy ra \(\frac{{AD}}{{BD}} = \frac{{AC}}{{BH}}\) nên \(AD.BH = AC.BD\)
b) Tam giác HEA và tam giác HDB có:
\(\widehat {HEA} = \widehat {HDB} = {90^0},\widehat {AHE} = \widehat {BHD}\) (hai góc đối đỉnh)
Do đó, $\Delta HEA\backsim \Delta HDB\left( g.g \right)$, suy ra \(\frac{{HE}}{{HD}} = \frac{{HA}}{{HB}}\), do đó \(HA.HD = HB.HE\)
Tam giác HFA và tam giác HDC có:
\(\widehat {HFA} = \widehat {HDC} = {90^0},\widehat {FHA} = \widehat {DHC}\) (hai góc đối đỉnh)
Do đó, $\Delta HFA\backsim \Delta HDC\left( g.g \right)$, suy ra \(\frac{{HF}}{{HD}} = \frac{{HA}}{{HC}}\), do đó, \(HA.HD = HF.HC\)
Vậy \(HA.HD = HB.HE = HC.HF\)
c) Tam giác BCE và tam giác BHD có:
\(\widehat {BEC} = \widehat {BDH} = {90^0},\widehat {HBD}\;chung\)
Do đó, $\Delta BCE\backsim \Delta BHD\left( g.g \right)$, suy ra \(\frac{{BC}}{{BH}} = \frac{{BE}}{{BD}}\) hay \(BC.BD = BE.BH\)
Tam giác BCF và tam giác HCD có:
\(\widehat {BFC} = \widehat {CDH} = {90^0},\widehat {HCD}\;chung\)
Do đó, $\Delta BCF\backsim \Delta HCD\left( g.g \right)$, suy ra \(\frac{{BC}}{{CH}} = \frac{{CF}}{{CD}}\) hay \(BC.CD = CF.CH\).
Ta có: \(BE.BH + CF.CH = BC.CD + BC.BD\)
\( = BC\left( {BD + CD} \right) = B{C^2}\)
Các bài tập cùng chuyên đề
Cho tam giác ABC vuông tại A và tam giác DEF vuông tại D có: \(\widehat B = \widehat F\)
Chọn đáp án đúng
Cho hình vẽ:
Chọn đáp án đúng
Cho tam giác ABC vuông tại A và DEF vuông tại D. Để \(\Delta ABC \backsim \Delta DEF\) thì ta cần thêm điều kiện:
Cho các mệnh đề sau. Chọn câu đúng.
(I) Nếu một góc nhọn của tam giác vuông này bằng một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng.
(II) Nếu một góc của tam giác vuông này lớn hơn một góc của tam giác vuông kia thì hai tam giác vuông đó đồng dạng.
Cho tam giác ABC vuông tại A, đường cao AH. Khẳng định nào sau đây đúng?
Cho hình vẽ:
Chọn đáp án đúng.
Một người ở vị trí điểm A muốn đo khoảng cách đến điểm B ở bên kia sông mà không thể qua sông được. Sử dụng giác kế, người đó xác định được một điểm M trên bờ sông sao cho \(AM = 2m,AM \bot AB\) và đo được góc AMB. Tiếp theo, người đó vẽ trên giấy tam giác A’M’B’ vuông tại A’ có \(A'M' = 1cm,\;\widehat {A'M'B'} = \widehat {AMB}\) và đo được \(A'B' = 5cm\) (hình vẽ dưới). Khoảng cách từ A đến B bằng:
Một ngọn tháp cho như hình vẽ dưới đây, biết rằng \(MB = 20m,MF = 2m,FE = 1,65m.\)
Chiều cao AB của ngọn tháp bằng:
Cho hình vẽ:
Khẳng định nào sau đây là đúng?
Cho tam giác ABC vuông tại A có \(\widehat B = {30^0}\), tam giác MNP vuông tại M có \(\widehat N = {60^{0.}}\)
Chọn đáp án đúng.
Cho tam giác ABC vuông tại A, đường cao AH. Khẳng định nào sau đây đúng?
Cho tam giác \(ABC\) cân tại \(A\) , đường cao \(CE\) . Tính \(AB\) , biết \(BC = 24\) cm và \(BE = 9\) cm.
Cho hình vẽ:
Chọn đáp án đúng
Cho hình vẽ:
Chọn đáp án đúng
Cho hình vẽ:
Chọn đáp án đúng.
Cho tam giác ABC cân tại A, \(AC = 20cm,BC = 24cm.\) Các đường cao AD và CE cắt nhau tại H. Khi đó,
Cho tam giác ABC vuông tại A, đường cao AH chia đoạn BC thành hai đoạn thẳng \(HB = 7cm,HC = 18cm.\) Điểm E thuộc đoạn thẳng HC sao cho đường thẳng đi qua E và vuông góc với BC chia tam giác thành 2 phần có diện tích bằng nhau. Khi đó,
Cho hình bình hành ABCD \(\left( {AC > AB} \right)\) . Gọi E là hình chiếu của C trên AB, K là hình chiếu của C trên AD và H là hình chiếu của B trên AC.
Chọn đáp án đúng.
Cho tam giác ABC vuông tại A. Lấy một điểm M bất kì trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt tia BA tại E. Khi đó:
Cho tam giác ABC cân tại A, đường cao CE. Biết rằng \(BE = 3cm,BC = 8cm.\)
Độ dài đoạn thẳng AB là:
Cho hình vẽ. Khẳng định nào sao đây đúng
Cho \(\Delta ABC\) vuông tại \(A\), đường cao \(AH\). Hệ thức nào sau đây đúng?
Cho \(\Delta ABC\) vuông tại \(A\), đường cao \(AH\) biết \(BH = 4\,{\rm{cm}}\), \(CH = 9\,{\rm{cm}}\). Độ dài đoạn thẳng \(AH\) là
Cho \(\Delta ABC\) vuông tại \(A\) có \(AB = 30\,{\rm{cm}}\), \(AC = 40\,{\rm{cm}}\). Kẻ đường cao \(AH\)\(\left( {H \in BC} \right)\). Độ dài đường cao \(AH\) là
\(\Delta ABC\) cân tại \(A\), hai đường cao \(AH\) và \(BK\), cho \(BC = 6\,{\rm{cm}}\), \(AB = 5\,{\rm{cm}}\). Độ dài đoạn thẳng \(BK\) là
Một người cao 1,5 mét có bóng trên mặt đất dài 2,1 mét. Cùng lúc ấy, một cái cây gần đó có bóng trên mặt đất dài 4,2 mét. Tính chiều cao của cây.
Một người đo chiều cao của một cái cây bằng cách cắm một chiếc cọc xuống đất, cọc cao 2,4m và cách vị trí gốc cây 19m. Người đo đứng cách xa chiếc cọc 1m và nhìn thấy đỉnh cọc thẳng với đỉnh của cây. Hãy tính chiều cao của cây, biết rằng khoảng cách từ chân đến mắt người ấy là 1,6m(H9.51)
A: Vị trí đỉnh cây
B: Vị trí gốc cây
C: Vị trí đỉnh cột.
D: Vị trí mắt
Nam và Việt muốn đo chiều cao của cột cờ ở sân trường mà hai bạn không trèo lên được. Vào buổi chiều, Nam đo thấy bóng của cột cờ dài 6m và bóng của Việt dài 70cm. Nam hỏi Việt cao bao nhiêu, Việt trả lời là cao 1,4m. Nam liền reo lên: "Tớ biết cột cờ cao bao nhiêu rồi đấy" Vậy cột cờ cao bao nhiêu và làm sao bạn Nam biết được.
Ta thấy chiếc cột cùng với bóng của nó tạo thành hai cạnh góc vuông của tam giác ABC vuông tại đỉnh A, bạn Việt và bóng của mình cũng được xem là hai canh góc vuông của tam giác A'B'C' vuông tại đỉnh A'. Vì các tia sáng mặt trời tạo với hai cái bóng các góc bằng nhau nên \(\widehat B = \widehat {B'}\)
a) Hai tam giác vuông ABC và A'B'C' có đồng dạng với nhau không?
b) Bạn Nam đã tính chiều cao chiếc cột, tức là độ dài đoạn thẳng AC như thế nào và kết quả là bao nhiêu?
Cho góc nhọn xOy, các điểm A, N nằm trên tia Ox, các điểm B, M nằm trên tia Oy sao cho AM, BN lần lượt vuông góc với Oy, Ox. Chứng minh tam giác OAM đồng dạng với tam giác OBN.