Cho tam giác ABC với tọa độ ba đỉnh là \(A\left( {1;1} \right),B\left( {3;1} \right),C\left( {1;3} \right)\). Tính độ dài đường cao AH.
Độ dài đường cao AH là khoảng cách từ A đến đường thẳng BC.
+ Lập phương trình BC:
\(\overrightarrow {BC} = \left( { - 2;2} \right) \Rightarrow \overrightarrow n = \left( {1;1} \right)\) là VTPT của đt BC.
PT BC đi qua B(3;1) nhận làm \(\overrightarrow n = \left( {1;1} \right)\) VTPT là: \(1\left( {x - 3} \right) + 1\left( {y - 1} \right) = 0 \Rightarrow x + y - 4 = 0\).
+ Độ dài đường cao AH là khoản cách từ A đến đt BC.
\(AH = d\left( {A,BC} \right) = \frac{{\left| {1 + 1 - 4} \right|}}{{\sqrt {{1^2} + {1^2}} }} = \frac{2}{{\sqrt 2 }} = \sqrt 2 \).
Các bài tập cùng chuyên đề
Nhân dịp nghỉ hè, Nam về quê ở với ông bà nội. Nhà ông bà nội có một ao cá có dạng hình chữ nhật ABCD với chiều dài AD = 15 m, chiều rộng AB = 12 m. Phần tam giác DEF là nơi ông bà nuôi vịt, AE = 5 m, CF = 6 m (H.7.11).
a) Chọn hệ trục toạ độ Oxy, có điểm O trùng với điểm B, các tia Ox, Oy tương ứng trùng với các tia BC, BA. Chọn 1 đơn vị độ dài trên mặt phẳng toạ độ tương ứng với 1 m trong thực tế. Hãy xác định toạ độ của các điểm A, B, C, D, E, F và viết phương trình đường thẳng EF.
b) Nam đứng ở vị trí B câu cá và có thể quăng lưỡi câu xa 10,7 m. Hỏi lưỡi câu có thể rơi vào nơi nuôi vịt hay không?
Trong mặt phẳng toạ độ Oxy, cho điểm A(0; -2) và đường thẳng \(\Delta \): x + y - 4 = 0.
a) Tính khoảng cách từ điểm A đến đường thẳng \(\Delta \).
b) Viết phương trình đường thẳng a đi qua điểm M(-1; 0) và song song với \(\Delta \).
c) Viết phương trình đường thẳng b đi qua điểm N(0; 3) và vuông góc với \(\Delta \)
Trong mặt phẳng toạ độ, cho tam giác ABC có A(1; 0), B(3; 2) và C(-2;-1).
a) Tính độ dài đường cao kẻ từ đỉnh A của tam giác ABC.
b) Tính diện tích tam giác ABC.
Chứng minh rằng hai đường thẳng d: y = ax + b (\(a{\rm{ }} \ne {\rm{ }}0\) ) và d': y=a'x + b' (\(a'{\rm{ }} \ne {\rm{ }}0\)) vuông góc với nhau khi và chỉ khi aa' = -1.
Trong mặt phẳng toạ độ, cho A(1;-1), B(3; 5), C(-2; 4). Tính diện tích tam giác ABC.
Có hai con tàu A và B cùng xuất phát từ hai bến, chuyển động đều theo đường thẳng ngoài biển. Trên màn hình ra đa của trạm điều khiển (được coi như mặt phẳng toạ độ Oxy với đơn vị trên các trục tính theo ki-lô-mét), sau khi xuất phát t (giờ) (\(t \ge 0\)), vị trí của tàu A có toạ độ được xác định bởi công thức \(\left\{ \begin{array}{l}x = 3 - 35t\\y = - 4 + 25t\end{array} \right.\) ,vị trí của tàu B có toạ độ là (4 – 30t; 3 – 40t).
a) Tính côsin góc giữa hai đường đi của hai tàu A và B.
b) Sau bao lâu kể từ thời điểm xuất phát hai tàu gần nhau nhất?
c) Nếu tàu A đứng yên ở vị trí ban đầu, tàu B chạy thì khoảng cách ngắn nhất giữa hai tàu bằng bao nhiêu?
Cho hai đường thẳng: \({\Delta _1}:\sqrt 3 x + y - 4 = 0,{\Delta _2}:x + \sqrt 3 y - 2\sqrt 3 = 0\).
a) Tìm tọa độ giao điểm của hai đường thẳng \({\Delta _1};{\Delta _2}\).
b) Tính số đo góc giữa hai đường thẳng \({\Delta _1};{\Delta _2}\).
Cho hai đường thẳng \(d:2x + y + 1 = 0\) và \(k:2x + 5y - 3 = 0\).
a) Chứng minh rằng hai đường thẳng đó cắt nhau. Tìm giao điểm của hai đường thẳng đó.
b) Tính tan của góc giữa hai đường thẳng.
Trong mặt phẳng \(Oxy\), cho tam giác ABC có \(A\left( {2; - 1} \right),B\left( {2; - 2} \right)\) và \(C\left( {0; - 1} \right)\).
a) Tính độ dài đường cao của tam giác ABC kẻ từ A.
b) Tính diện tích tam giác ABC.
c) Tính bán kính đường tròn nội tiếp tam giác ABC.
Cho đường thẳng \(d:x - 2y + 1 = 0\) và điểm \(A\left( { - 2;2} \right)\).
a) Chứng minh A không thuộc đường thẳng d.
b) Tìm tọa độ hình chiếu vuông góc của A trên đường thẳng d.
c) Xác định điểm đối xứng của A qua đường thẳng d.
Trong một hoạt động ngoại khóa của trường, lớp Việt định mở một gian hàng bán bánh mì và nước khoáng. Biết rằng giá gốc một bánh mì là 15 000 đồng, một chai nước là 5 000 đồng. Các bạn dự kiến bán bánh mì với giá 20 000 đồng/ 1 bánh mì và nước giá 8 000 đồng/ 1 chai. Dựa vào thống kê số người tham gia hoạt động và nhu cầu thực tế các bạn dự kiến tổng số bánh mì và số chai nước không vượt quá 200. Theo quỹ lớp thì số tiền lớp Việt được dùng không quá 2 000 000 đồng. Hỏi lớp Việt có thể đạt được tối đa lợi nhuận là bao nhiêu?
Trong mặt phẳng \(Oxy\), cho hai điểm \(A\left( { - 3;0} \right),B\left( {1; - 2} \right)\) và đường thẳng \(d:x + y - 1 = 0\).
a) Chứng minh rằng hai điểm A và B nằm cùng phía so với đường thẳng d.
b) Điểm M thay đổi trên đường thẳng d. Tìm giá trị nhỏ nhất của chu vi tam giác ABM.
Cho đường thẳng \(d:x - y + 3 = 0\). Phương trình đường thẳng song song với d và cách d một khoảng là \(\sqrt 2 \) là
A. \(x + y + 1 = 0\) và \(x + y + 3 = 0\)
B. \(x - y - 1 = 0\)
C. \(x - y + 3 = 0\)
D. \(x - y + 3 = 0\) và \(x - y - 1 = 0\)
Cho tam giác ABC với \(A\left( {1; - 1} \right),B\left( {3;5} \right),C\left( { - 2;4} \right)\).
a) Viết phương trình tham số của đường thẳng AB.
b) Viết phương trình đường cao AH của tam giác ABC.
c) Tính khoảng cách từ điểm A đến đường thẳng BC.
d) Tính sin của góc giữa hai đường thẳng AB và AC.
Cho đường thẳng d có phương trình tham số \(\left\{ \begin{array}{l}x = 1 + t\\y = 2 + 2t\end{array} \right.\).
Tìm giao điểm của d với đường thẳng \(\Delta :x + y - 2 = 0\).
Có hai tàu điện ngầm A và B chạy trong nội đô thành phố củng xuất phát tử hai ga, chuyển động đều theo đường thẳng. Trên màn hình ra đa của trạm điều khiển (được coi như mặt phẳng toạ độ Oxy với đơn vị trên các trục tính theo ki-lô-mét), sau khi xuất phát t (giờ) (t ≥ 0), vị trí của tàu A có toạ độ được xác định bởi công thức: \(\left\{ \begin{array}{l}x = 7 + 36t\\y = - 8 + 8t\end{array} \right.\) , vị trí của tàu B có toạ độ là (9 + 8t ; 5 – 36t).
a) Tính côsin góc giữa hai đường đi của hai tàu A và B.
b) Sau bao lâu kể từ thời điểm xuất phát hai tàu gần nhau nhất?