Trong mặt phẳng Oxy cho tam giác ABC, biết A(0;5), B(-2;8) và C(6;9). Giả sử điểm H(a;b) là chân đường cao vẽ từ đỉnh A của tam giác ABC. Tính \(b + \frac{1}{2}a\)?
Đáp án:
Đáp án:
Giải hệ \(\left\{ \begin{array}{l}\overrightarrow {AH} .\overrightarrow {BC} = 0\\\overrightarrow {BH} = k\overrightarrow {BC} \end{array} \right.\)
8
Ta có: \(\overrightarrow {BC} = (8;1)\), \(\overrightarrow {AH} = (a - 0;b - 5) = (a;b - 5)\), \(\overrightarrow {BH} = (a + 2;b - 8)\).
Vì AH vuông góc với BC nên ta có \(\overrightarrow {AH} .\overrightarrow {BC} = 0 \Rightarrow 8.a + 1.(b - 5) = 0 \Rightarrow 8a + b - 5 = 0\) (1).
Vì H là chân đường cao kẻ từ A nên B, H, C thẳng hàng hay \(\overrightarrow {BH} \), \(\overrightarrow {BC} \) cùng phương.
Khi đó \(\overrightarrow {BH} = k\overrightarrow {BC} \Rightarrow \left\{ \begin{array}{l}a + 2 = k.8\\b - 8 = k.1\end{array} \right. \Rightarrow k = \frac{{a + 2}}{8} = b - 8\) (2).
Giải hệ hai phương trình (1), (2) ta được \(a = - \frac{2}{5}\), \(b = \frac{{41}}{5}\).
Vậy \(b + \frac{1}{2}a = \frac{{41}}{5} + \frac{1}{2}.\left( { - \frac{2}{5}} \right) = 8\).
Các bài tập cùng chuyên đề
Tích vô hướng và góc giữa hai vectơ \(\overrightarrow u = \left( {0; - 5} \right),\;\overrightarrow v = \left( {\sqrt 3 ;1} \right)\)
Trong mặt phẳng tọa độ Oxy, cho hai vectơ không cùng phương \(\overrightarrow u = \left( {x;y} \right)\) và \(\overrightarrow v = \left( {x';y'} \right)\).
a) Xác định tọa độ của các điểm A và B sao cho \(\overrightarrow {OA} = \overrightarrow u ,\;\overrightarrow {OB} = \overrightarrow v .\)
b) Tính \(A{B^2},O{A^2},O{B^2}\) theo tọa độ của A và B.
c) Tính \(\overrightarrow {OA} .\overrightarrow {OB} \) theo tọa độ của A, B.
Cho hai vectơ cùng phương \(\overrightarrow u = \left( {x;y} \right)\) và \(\overrightarrow v = \left( {kx;ky} \right)\). Hãy kiểm tra công thức \(\overrightarrow u .\overrightarrow v = k\left( {{x^2} + {y^2}} \right)\) theo từng trường hợp sau:
a) \(\overrightarrow u = \overrightarrow 0 \)
b) \(\overrightarrow u \ne \overrightarrow 0 \) và \(k \ge 0\)
c) \(\overrightarrow u \ne \overrightarrow 0 \) và \(k < 0\)
Cho hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) thỏa mãn \(\left| {\overrightarrow a } \right| = 6,\,\,\left| {\overrightarrow b } \right| = 8\) và \(\left| {\overrightarrow a + \overrightarrow b } \right| = 10.\)
a) Tính tích vô hướng \(\overrightarrow a .\left( {\overrightarrow a + \overrightarrow b } \right).\)
b) Tính số đo của góc giữa hai vectơ \(\overrightarrow a \) và \(\overrightarrow a + \overrightarrow b .\)
Cho tam giác ABC. Giá trị của biểu thức \(\overrightarrow {BA} .\overrightarrow {CA} \) bằng:
A. AB. AC. cos\(\widehat {BAC}\)
B. – AB. AC. cos\(\widehat {BAC}\)
C. AB. AC. cos\(\widehat {ABC}\)
D. AB. AC. cos\(\widehat {ACB}\)
Cho tam giác ABC. Giá trị của biểu thức \(\overrightarrow {AB} .\overrightarrow {BC} \) bằng:
A. AB. BC. cos\(\widehat {ABC}\)
B. AB. AC. cos\(\widehat {ABC}\)
C. – AB. BC. cos\(\widehat {ABC}\)
D. AB. BC. cos\(\widehat {BAC}\)
Cho đoạn thẳng AB. Tập hợp các điểm M nằm trong mặt phẳng thoả mãn \(\overrightarrow {MA} .\overrightarrow {MB} = 0\) là:
A. Đường tròn tâm A bán kính AB
B. Đường tròn tâm B bán kính AB
C. Đường trung trực của đoạn thẳng AB
D. Đường tròn đường kính AB
Nếu hai điểm M, N thoả mãn \(\overrightarrow {MN} .\overrightarrow {NM} = - 9\) thì:
A. MN = 9
B. MN = 3
C. MN = 81
D. MN = 6
Cho hình thoi ABCD cạnh a và \(\widehat A\)= 120°. Tính \(\overrightarrow {AC} .\overrightarrow {BC} \).
Cho các vectơ \(\overrightarrow a ,\overrightarrow b \ne \overrightarrow 0 \). Phát biểu nào sau đây là đúng?
A. \(\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\left| {\cos \left( {\overrightarrow a ,\overrightarrow b } \right)} \right|\)
B. \(\left| {\overrightarrow a .\overrightarrow b } \right| = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\)
C. \(\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\sin \left( {\overrightarrow a ,\overrightarrow b } \right)\)
D. \(\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\)
Trong mặt phẳng Oxy, cho hai đường thẳng \(\Delta \) đi qua điểm \({M_0}\left( {{x_0};{y_0}} \right)\) và vectơ \(\overrightarrow n = \left( {a;b} \right)\) và \(\overrightarrow u = \left( {b; - a} \right)\) khác vectơ 0. Cho biết \(\overrightarrow u \) có giá song song hoặc trùng với \(\Delta \).
a) Tính tích vô hướng \(\overrightarrow n \overrightarrow {.u} \) và nêu nhận xét về phương của hai vectơ \(\overrightarrow n ,\overrightarrow u \)
b) Gọi \(M\left( {x;y} \right)\) là điểm di động trên \(\Delta \). Chứng tỏ rằng vectơ \(\overrightarrow {{M_0}M} \) luôn cùng phương với vectơ \(\overrightarrow u \) và luôn vuông góc với vectơ \(\overrightarrow n \)
Trong mặt phẳng toạ độ Oxy, cho \(\overrightarrow i \)và \(\overrightarrow j \) là vectơ đơn vị trên trục hoành Ox và ở trên trục tung Oy.
a) Tính \({\overrightarrow i ^2};{\overrightarrow j ^2};\overrightarrow i .\overrightarrow j \).
b) Cho \(\overrightarrow u = \left( {{x_1},{y_1}} \right)\), \(\overrightarrow v = \left( {{x_2},{y_2}} \right)\). Tính tích vô hướng \(\overrightarrow u .\overrightarrow v \).