Đề bài

Một vật chuyển động có quãng đường được xác định bởi phương trình \(s\left( t \right) = 2{t^2} + 5t + 2\), trong đó s tính bằng mét và t là thời gian tính bằng giây. Tính vận tốc tức thời tại thời điểm \(t = 4\).

Phương pháp giải

+ Sử dụng kiến thức về định nghĩa đạo hàm để tính: Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {a;b} \right)\) và \({x_0} \in \left( {a;b} \right)\). Nếu tồn tại giới hạn hữu hạn \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\) thì giới hạn này được gọi là đạo hàm của hàm số f(x) tại \({x_0}\), kí hiệu là \(f'\left( {{x_0}} \right)\) hoặc \(y'\left( {{x_0}} \right)\). Vậy \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\)

+ Sử dụng kiến thức về ý nghĩa đạo hàm để tính: Nếu hàm số \(s = f\left( t \right)\) biểu thị quãng đường di chuyển của vật theo thời gian t thì \(f'\left( {{t_0}} \right)\) biểu thị tốc độ tức thời của chuyển động tại thời điểm \({t_0}\)

Lời giải của GV Loigiaihay.com

Ta có: Với \({t_0}\) bất kì ta có:

\(s'\left( {{t_0}} \right) \) \( = \mathop {\lim }\limits_{t \to {t_0}} \frac{{s\left( t \right) - s\left( {{t_0}} \right)}}{{t - {t_0}}} \) \( = \mathop {\lim }\limits_{t \to {t_0}} \frac{{2{t^2} + 5t + 2 - 2t_0^2 - 5{t_0} - 2}}{{t - {t_0}}} \) \( = \mathop {\lim }\limits_{t \to {t_0}} \frac{{2\left( {{t^2} - t_0^2} \right) + 5\left( {t - {t_0}} \right)}}{{t - {t_0}}} \) \( = \mathop {\lim }\limits_{t \to {t_0}} \frac{{\left( {t - {t_0}} \right)\left( {2t + 2{t_0} + 5} \right)}}{{t - {t_0}}} \) \( = \mathop {\lim }\limits_{t \to {t_0}} \left( {2t + 2{t_0} + 5} \right) \) \( = 4{t_0} + 5\)

Do đó, \(s'\left( t \right) = 4t + 5\)

Vậy vận tốc tức thời tại thời điểm \(t = 4\) là: \(s'\left( 4 \right) = 4.4 + 5 = 21\) (giây)

Các bài tập cùng chuyên đề

Bài 1 :

Dùng định nghĩa để tính đạo hàm của các hàm số sau:

a) \(f\left( x \right) =  - {x^2}\);

b) \(f\left( x \right) = {x^3} - 2x\);

c) \(f\left( x \right) = \frac{4}{x}\).

Xem lời giải >>
Bài 2 :

Dùng định nghĩa, tính đạo hàm của hàm số \(y = \sqrt x \) tại điểm \(x = {x_0}\) với \({x_0} > 0\).

Xem lời giải >>
Bài 3 :

a) Dùng định nghĩa tỉnh đạo hàm của hàm số \(y = x\) tại điểm \(x = {x_0}\).

b) Nhắc lại đạo hàm của các hàm số \(y = {x^2},y = {x^3}\) đã tìm được ở bài học trước. Từ đó, dự đoán đạo hàm của hàm số \(y = {x^n}\) với \(n \in {\mathbb{N}^*}\).

Xem lời giải >>
Bài 4 :

Cho biết \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{x} = 1\). Dùng định nghĩa tính đạo hàm của hàm số \(y = \sin x\).

Xem lời giải >>
Bài 5 :

Cho \(f\left( x \right)\) và \(g\left( x \right)\) là hai hàm số có đạo hàm tại \({x_0}\). Xét hàm số \(h\left( x \right) = f\left( x \right) + g\left( x \right)\).

Ta có \(\frac{{h\left( x \right) - h\left( {{x_0}} \right)}}{{x - {x_0}}} = \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} + \frac{{g\left( x \right) - g\left( {{x_0}} \right)}}{{x - {x_0}}}\)

nên \(h'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{h\left( x \right) - h\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} + \mathop {\lim }\limits_{x \to {x_0}} \frac{{g\left( x \right) - g\left( {{x_0}} \right)}}{{x - {x_0}}} = ... + ...\)

Chọn biểu thức thích hợp thay cho chỗ chấm để tìm \(h'\left( {{x_0}} \right)\).

Xem lời giải >>
Bài 6 :

Tính đạo hàm của các hàm số sau:

a) \(y = {x^2} + 1;\)                       

b) \(y = kx + c\) (với k, c là các hằng số).

Xem lời giải >>
Bài 7 :

Tính đạo hàm \(f'\left( {{x_0}} \right)\) tại điểm \({x_0}\) bất kì trong các trường hợp sau:

a) \(f\left( x \right) = c\) (c là hằng số);                       

b) \(f\left( x \right) = x.\)

Xem lời giải >>
Bài 8 :

Tính (bằng định nghĩa) đạo hàm của các hàm số sau:

a) \(y = {x^2} - x\) tại \({x_0} = 1;\)

b) \(y =  - {x^3}\) tại \({x_0} =  - 1.\)

Xem lời giải >>
Bài 9 :

Sử dụng định nghĩa, tìm đạo hàm của các hàm số sau:

a) \(y = k{x^2} + c\) (với k, c là các hằng số);                      

b) \(y = {x^3}.\)

Xem lời giải >>
Bài 10 :

a) Với \(h \ne 0,\) biến đổi hiệu \(\sin \left( {x + h} \right) - \sin x\) thành tích.

b) Sử dụng công thức giới hạn \(\mathop {\lim }\limits_{h \to 0} \frac{{\sin h}}{h} = 1\) và kết quả của câu a, tính đạo hàm của hàm số y = sin x tại điểm x bằng định nghĩa.

Xem lời giải >>
Bài 11 :

Tính đạo hàm của hàm số \(f\left( x \right) = {x^3}\) tại điểm x bất kì bằng định nghĩa.

Xem lời giải >>
Bài 12 :

Tính đạo hàm của hàm số \(f\left( x \right) = \frac{1}{x}\) tại \({x_0} = 2\) bằng định nghĩa.

Xem lời giải >>
Bài 13 :

Tính vận tốc tức thời của viên bi tại thời điểm \({x_0} = 1s\) trong bài toán tìm vận tốc tức thời.

Xem lời giải >>
Bài 14 :

Tính đạo hàm của hàm số \(f(x) = 3{x^3} - 1\) tại điểm \({x_0} = 1\) bằng định nghĩa.

Xem lời giải >>
Bài 15 :

Giả sử chi phí C (USD) để sản xuất Q máy vô tuyến là \(C(Q) = {Q^2} + 80Q + 3500\).

a) Ta gọi chi phí biên là chi phí gia tăng để sản xuất thêm 1 sản phẩm từ Q sản phẩm lên Q + 1 sản phẩm. Giả sử chi phí biên được xác định bởi hàm số C’(Q). Tìm hàm chi phí biên.

b) Tìm C’(90) và giải thích ý nghĩa kết quả tìm được.

c) Hãy tính chi phí sản xuất máy vô tuyến thứ 100.

Xem lời giải >>
Bài 16 :

Sử dụng kết quả  \(\mathop {\lim }\limits_{x \to 0} \frac{{\ln (1 + x)}}{x} = 1\), tính đạo hàm của hàm số \(y = \ln x\) tại điểm x dương bất kì bằng định nghĩa.

Xem lời giải >>
Bài 17 :

Sử dụng kết quả \(\mathop {\lim }\limits_{x \to 0} \frac{{{e^x} - 1}}{x} = 1\), tính đạo hàm của hàm số \(y = {e^x}\) tại điểm x bất kì bằng định nghĩa.

Xem lời giải >>
Bài 18 :

Bằng định nghĩa, tính đạo hàm của hàm số \(y = \cot x\) tại điểm x bất kì, \(x \ne k\pi (k \in \mathbb{Z})\).

Xem lời giải >>
Bài 19 :

Bằng định nghĩa, tính đạo hàm của hàm sô \(y = \tan x\) tại điểm x bất kì, \(x \ne \frac{\pi }{2} + k\pi \,\,\,(k \in \mathbb{Z})\).

Xem lời giải >>
Bài 20 :

Bằng định nghĩa, tính đạo hàm của hàm số \(y = \cos x\) tại điểm x bất kì.

Xem lời giải >>
Bài 21 :

Sử dụng kiết quả \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{x} = 1\), tính đạo hàm của hàm số \(y = \sin x\) tại điểm x bất kì bằng định nghĩa.

Xem lời giải >>
Bài 22 :

Tính đạo hàm của hàm số \(y = \sqrt x \) tại điểm \({x_0} = 1\) bằng định nghĩa.

Xem lời giải >>
Bài 23 :

a) Tính đạo hàm của hàm số \(y = {x^2}\) tại điểm \({x_0}\) bất kì bằng định nghĩa.

b) Dự đoán đạo hàm của hàm số \(y = {x^n}\) tại điểm x bất kì.

Xem lời giải >>
Bài 24 :

Cho hai hàm số \(f(x);\,g(x)\) xác định trên khoảng (a; b), cùng có đạo hàm tại điểm \({x_0} \in (a;b)\).

a) Xét hàm số \(h(x) = f(x) + g(x);\,\,x \in (a;b)\). So sánh

\(\mathop {\lim }\limits_{\Delta x \to 0} \frac{{h({x_0} + \Delta x) - h({x_0})}}{{\Delta x}}\) và \(\mathop {\lim }\limits_{\Delta x \to 0} \frac{{g({x_0} + \Delta x) - f({x_0})}}{{\Delta x}} + \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f({x_0} + \Delta x) - g({x_0})}}{{\Delta x}}\)

b) Nêu nhận xét về \(h'({x_0})\) và \(f'({x_0}) + g'({x_0})\).

Xem lời giải >>
Bài 25 :

Cho hàm số \(y = \sqrt[3]{x}\). Chứng minh rằng \(y'\left( x \right) = \frac{1}{{3\sqrt[3]{{{x^2}}}}}\left( {x \ne 0} \right)\).

Xem lời giải >>
Bài 26 :

Xét tính liên tục, sự tồn tại đạo hàm và tính đạo hàm (nếu có) của các hàm số sau đây trên \(\mathbb{R}\).

a) \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} - x + 2\;khi\;x \le 2\\\frac{1}{{x + 1}}\;\;\;\;\;\;\;\;khi\;x > 2\end{array} \right.\);

b) \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} + 2x\;khi\;x \le 1\\\frac{2}{x} + 1\;\;\;\;\;khi\;x > 1\end{array} \right.\).

Xem lời giải >>
Bài 27 :

Dùng định nghĩa để tính đạo hàm của các hàm số sau:

a) \(f\left( x \right) = \sqrt {4x + 1} \) tại \(x = 2\);

b) \(f\left( x \right) = {x^4}\) tại \(x =  - 1\);

c) \(f\left( x \right) = \frac{1}{{x + 1}}\);

d) \(f\left( x \right) = \sqrt[3]{{{x^2} + 1}}\).

Xem lời giải >>
Bài 28 :

Cho \(y = f\left( x \right)\) có đạo hàm tại \({x_0}\) là \(f'\left( {{x_0}} \right)\). Phát biểu nào sau đây là đúng?

A. \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) + f\left( {{x_0}} \right)}}{{x + {x_0}}}\)

B. \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\)

C. \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x + {x_0}}}\)

D. \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) + f\left( {{x_0}} \right)}}{{x - {x_0}}}\)

Xem lời giải >>
Bài 29 :

Điện lượng \(Q\) truyền trong dây dẫn là một hàm số của thời gian \(t,{\rm{ }}Q = Q\left( t \right).\) Cường độ trung bình trong khoảng  \(\left| {t - {t_0}} \right|\) được xác định bởi công thức \(\frac{{Q\left( t \right) - Q\left( {{t_0}} \right)}}{{t - {t_0}}}.\) Cường độ tức thời tại thời điểm \({t_0}\) là:

A. \(\frac{{Q\left( t \right) - Q\left( {{t_0}} \right)}}{{t - {t_0}}}.\)

B. \(\mathop {\lim }\limits_{t \to 0} \frac{{Q\left( t \right) - Q\left( {{t_0}} \right)}}{{t - {t_0}}}.\)

C. \(\mathop {\lim }\limits_{t \to {t_0}} \frac{{Q'\left( t \right) - Q'\left( {{t_0}} \right)}}{{t - {t_0}}}.\)

D. \(\mathop {\lim }\limits_{t \to {t_0}} \frac{{Q\left( t \right) - Q\left( {{t_0}} \right)}}{{t - {t_0}}}.\)

Xem lời giải >>
Bài 30 :

Tính đạo hàm của mỗi hàm số sau bằng định nghĩa:

a) \(f\left( x \right) = x + 2;\)

b) \(g\left( x \right) = 4{x^2} - 1;\)

c) \(h\left( x \right) = \frac{1}{{x - 1}}.\)

Xem lời giải >>