Tìm \(x\), biết:
a) \(x:\left( { - \dfrac{3}{5}} \right) = 1\dfrac{1}{4}\)
b) \({\left( {0,9} \right)^9}:x = - {\left( {0,9} \right)^7}\)
c) \(\left| {x - 12} \right| = \sqrt 5 - \sqrt 7 \)
a) Thực hiện phép nhân hai số hữu tỉ, tìm \(x\).
b) Thực hiện phép chia hai lũy thừa cùng cơ số: Khi chia hai lũy thừa cùng cơ số (khác 0), ta giữ nguyên cơ số và lấy số mũ của lũy thừa bị chia trừ đi số mũ của lũy thừa chia: \({x^m}:{x^n} = {x^{m - n}}\,\left( {x \ne 0;m \ge n} \right)\)
c) Tính căn bậc hai
Vận dụng quy tắc chuyển vế tìm \(x\)
d) \(\left| x \right| = a\)
Trường hợp \(a < 0\), khi đó phương trình không có nghiệm \(x\)
Trường hợp \(a > 0\), vận dụng kiến thức giá trị tuyệt đối của một số thực: \(\left| x \right| = \left\{ \begin{array}{l}x\,\,\,\,\,\,khi\,\,\,x > 0\\ - x\,\,\,khi\,\,x < 0\\0\,\,\,\,\,\,\,khi\,\,\,x = 0\end{array} \right.\)
a) \(x:\left( { - \dfrac{3}{5}} \right) = 1\dfrac{1}{4}\)
\(\begin{array}{l}x:\left( { - \dfrac{3}{5}} \right) = \dfrac{5}{4}\\x = \dfrac{5}{4}.\left( { - \dfrac{3}{5}} \right)\\x = \dfrac{{ - 3}}{4}\end{array}\)
Vậy \(x = \dfrac{{ - 3}}{4}\)
b) \({\left( {0,9} \right)^9}:x = - {\left( {0,9} \right)^7}\)
\(\begin{array}{l}x = {\left( {0,9} \right)^9}:\left[ { - {{\left( {0,9} \right)}^7}} \right]\\x = - \left[ {{{\left( {0,9} \right)}^9}:{{\left( {0,9} \right)}^7}} \right]\\x = - {\left( {0,9} \right)^{9 - 7}}\\x = - {\left( {0,9} \right)^2}\\x = - 0,81\end{array}\)
Vậy \(x = - 0,81\)
c) \(\left| {x - 12} \right| = \sqrt 5 - \sqrt 7 \)
Vì \(5 < 7\) nên \(\sqrt 5 < \sqrt 7 \) do đó, \(\sqrt 5 - \sqrt 7 < 0\)
Vì \(\left| {x - 12} \right| \ge 0\) với mọi số thực \(x\) mà \(\sqrt 5 - \sqrt 7 < 0\) nên không có giá trị nào của \(x\) thỏa mãn \(\left| {x - 12} \right| = \sqrt 5 - \sqrt 7 \).
Vậy \(x \in \emptyset \)