Đề bài

Tìm \(x\), biết:

a) \(\dfrac{1}{3}x + \dfrac{2}{5}\left( {x - 1} \right) = 0\)

b) \({\left( {2x + 1} \right)^2} = \dfrac{{36}}{{25}}\)

c) \(\dfrac{1}{2}x + \sqrt {0,04}  = \sqrt {1,96} \)

d) \(\left| {\left| {2x - 1} \right| + \dfrac{1}{2}} \right| = \dfrac{4}{5}\)

 

Phương pháp giải

a) Thực hiện các phép toán với số hữu tỉ

Vận dụng quy tắc chuyển vế, tìm \(x\).

b) Giải \({\left[ {A\left( x \right)} \right]^2} = {a^2} = {\left( { - a} \right)^2}\)

Trường hợp 1: \(A\left( x \right) = a\)

Trường hợp 2: \(A\left( x \right) =  - a\)

c) Tính căn bậc hai số học của số thực

Thực hiện các phép toán với số hữu tỉ

Vận dụng quy tắc chuyển vế, tìm \(x\).

d) \(\left| x \right| = a\)

Trường hợp \(a < 0\), khi đó phương trình không có nghiệm \(x\)

Trường hợp \(a > 0\), vận dụng kiến thức giá trị tuyệt đối của một số thực: \(\left| x \right| = \left\{ \begin{array}{l}x\,\,\,\,\,\,khi\,\,\,x > 0\\ - x\,\,\,khi\,\,x < 0\\0\,\,\,\,\,\,\,khi\,\,\,x = 0\end{array} \right.\)

 

Lời giải của GV Loigiaihay.com

a) \(\dfrac{1}{3}x + \dfrac{2}{5}\left( {x - 1} \right) = 0\)

\(\begin{array}{l}\dfrac{1}{3}x + \dfrac{2}{5}x - \dfrac{2}{5} = 0\\x.\left( {\dfrac{1}{3} + \dfrac{2}{5}} \right) = \dfrac{2}{5}\\x.\left( {\dfrac{5}{{15}} + \dfrac{6}{{15}}} \right) = \dfrac{2}{5}\\x.\dfrac{{11}}{{15}} = \dfrac{2}{5}\\x = \dfrac{2}{5}:\dfrac{{11}}{{15}}\\x = \dfrac{2}{5}.\dfrac{{15}}{{11}}\\x = \dfrac{6}{{11}}\end{array}\)

Vậy \(x = \dfrac{6}{{11}}\)

b) \({\left( {2x + 1} \right)^2} = \dfrac{{36}}{{25}}\)

\({\left( {2x + 1} \right)^2} = {\left( {\dfrac{6}{5}} \right)^2} = {\left( { - \dfrac{6}{5}} \right)^2}\)

Trường hợp 1:

\(\begin{array}{l}2x + 1 = \dfrac{6}{5}\\2x = \dfrac{6}{5} - 1 = \dfrac{6}{5} - \dfrac{5}{5}\\2x = \dfrac{1}{5}\\x = \dfrac{1}{5}:2 = \dfrac{1}{5}.\dfrac{1}{2}\\x = \dfrac{1}{{10}}\end{array}\)

Vậy \(x \in \left\{ {\dfrac{1}{{10}};\dfrac{{ - 11}}{{10}}} \right\}\)

Trường hợp 2:

\(\begin{array}{l}2x + 1 = - \dfrac{6}{5}\\2x = \dfrac{{ - 6}}{5} - 1 = \dfrac{{ - 6}}{5} - \dfrac{5}{5}\\2x = \dfrac{{ - 11}}{5}\\x = \dfrac{{ - 11}}{5}:2 = \dfrac{{ - 11}}{5}.\dfrac{1}{2}\\x = \dfrac{{ - 11}}{{10}}\end{array}\)

c) \(\dfrac{1}{2}x + \sqrt {0,04} = \sqrt {1,96} \)

\(\begin{array}{l}\dfrac{1}{2}x + \sqrt {{{\left( {0,2} \right)}^2}} = \sqrt {{{\left( {1,4} \right)}^2}} \\\dfrac{1}{2}x + 0,2 = 1,4\\\dfrac{1}{2}x = 1,4 - 0,2 = 1,2\\x = 1,2:\dfrac{1}{2} = 1,2.2\\x = 2,4\end{array}\)

Vậy \(x = 2,4\).

d) \(\left| {\left| {2x - 1} \right| + \dfrac{1}{2}} \right| = \dfrac{4}{5}\)

Trường hợp 1:

\(\begin{array}{l}\left| {2x - 1} \right| + \dfrac{1}{2} = \dfrac{4}{5}\\\left| {2x - 1} \right| = \dfrac{4}{5} - \dfrac{1}{2} = \dfrac{8}{{10}} - \dfrac{5}{{10}}\\\left| {2x - 1} \right| = \dfrac{3}{{10}}\end{array}\)

*\(2x - 1 = \dfrac{3}{{10}}\)

\(\begin{array}{l}2x = \dfrac{3}{{10}} + 1 = \dfrac{3}{{10}} + \dfrac{{10}}{{10}}\\2x = \dfrac{{13}}{{10}}\\x = \dfrac{{13}}{{10}}:2 = \dfrac{{13}}{{10}}.\dfrac{1}{2}\\x = \dfrac{{13}}{{20}}\end{array}\)

*\(2x - 1 = \dfrac{{ - 3}}{{10}}\)

\(\begin{array}{l}2x = \dfrac{{ - 3}}{{10}} + 1 = \dfrac{{ - 3}}{{10}} + \dfrac{{10}}{{10}}\\2x = \dfrac{7}{{10}}\\x = \dfrac{7}{{10}}:2 = \dfrac{7}{{10}}.\dfrac{1}{2}\\x = \dfrac{7}{{20}}\end{array}\)

Trường hợp 2:

\(\begin{array}{l}\left| {2x - 1} \right| + \dfrac{1}{2} = - \dfrac{4}{5}\\\left| {2x - 1} \right| = - \dfrac{4}{5} - \dfrac{1}{2} = \dfrac{{ - 8}}{{10}} - \dfrac{5}{{10}}\\\left| {2x - 1} \right| = \dfrac{{ - 13}}{{10}}\end{array}\)

Vì \(\dfrac{{ - 13}}{{10}} < 0\) nên không có \(x\) thỏa mãn \(\left| {2x - 1} \right| = \dfrac{{ - 13}}{{10}}\).

Vậy \(x \in \left\{ {\dfrac{{13}}{{20}};\dfrac{7}{{20}}} \right\}\)