Đề bài

Trong lô hàng 10 chiếc máy tính mới nhập về có 3 chiếc bị lỗi, 7 chiếc đạt chuẩn. Chọn ngẫu nhiên đồng thời 4 chiếc máy tính trong lô hàng đó. Gọi X là số máy tính bị lỗi trong 4 chiếc được chọn ra.

a) Lập bảng phân bố xác suất của biến ngẫu nhiên rời rạc X.

b) Khi chọn ra 4 chiếc máy tính thì tình huống mấy chiếc bị lỗi có khả năng xảy ra cao nhất?

c) Tính xác suất để trong 4 chiếc máy tính được chọn ra có ít nhất 1 chiếc bị lỗi.

d) Tính kì vọng, phương sai và độ lệch chuẩn của X.

Phương pháp giải

a) X là số máy tính bị lỗi trong 4 chiếc được chọn ra, tức là có 0,1,2,3 cái máy tính bị lỗi. Ta tính được không gian mẫu, tính được số cách chọn 0,1,2,3 cái máy tính lỗi trong 4 máy tính từ đó tính được xác suất của mỗi lần được lấy ra 0,1,2,3 máy tính lỗi.

b) Dựa vào xác suất đưa ra kết luận được số chiếc bị lỗi có khả năng xảy ra cao nhất( xác suất lớn nhất).

c) Gọi \(P(A)\) là xác suất trong 4 chiếc chọn ra không có chiếc nào bị lỗi từ đó xác suất có ít nhất 1 chiếc bị lỗi là \(1 - P(A)\).

d) Để tính kì vọng, phương sai và độ lệch chuẩn áp dụng các công thức sau

\(\begin{array}{l}E(X) = {x_1}{p_1} + {x_2}{p_2} + ... + {x_n}{p_n}\\V(X) = {({x_1} - \mu )^2}{p_1} + {({x_2} - \mu )^2}{p_2} + ... + {({x_n} - \mu )^2}{p_n}\\\sigma (X) = \sqrt {V(X)} \end{array}\)

Lời giải của GV Loigiaihay.com

a) X là biến ngẫu nhiên rời rạc và có giá trị thuộc tập \(\left\{ {0;1;2;3} \right\}\)

Ta có \(n(\Omega ) = C_{10}^4 = 210.\)

+ Biến cố \(X = 0\) là biến cố :”Không có máy tính nào bị lỗi.”

Suy ra \(n(X = 0) = C_7^4 = 35 \Rightarrow P(X = 0) = \frac{{35}}{{210}}.\)

+ Biến cố \(X = 1\) là biến cố :” Có 1 chiếc máy bị lỗi trong 4 chiếc được chọn.”

Suy ra \(n(X = 1) = C_3^1.C_7^3 = 105 \Rightarrow P(X = 1) = \frac{{105}}{{210}}.\)

+ Biến cố \(X = 2\) là biến cố :” Có 2 chiếc máy bị lỗi trong 4 chiếc được chọn.”

Suy ra \(n(X = 2) = C_3^2.C_7^2 = 63 \Rightarrow P(X = 2) = \frac{{63}}{{210}}.\)

+ Biến cố \(X = 3\) là biến cố :” Có 3 chiếc máy bị lỗi trong 4 chiếc được chọn.”

Suy ra \(n(X = 3) = C_3^3.C_7^1 = 7 \Rightarrow P(X = 3) = \frac{7}{{210}}.\)

Bảng phân bố xác suất của X là:

b) Khi chọn ra 4 chiếc máy tính thì tình huống 1 máy tính bị lỗi có khả năng xảy ra cao nhất.

c) Gọi A là biến cố:” Trong 4 chiếc máy tính được chọn ra không có chiếc nào bị lỗi.”

Khi đó \(P(A) = P(X = 0) = \frac{{35}}{{210}}\)

Do đó xác suất để trong 4 chiếc máy tính được chọn ra có ít nhất 1 chiếc bị lỗi là:

\(P = 1 - P(X = 0) = 1 - \frac{{35}}{{210}} = \frac{5}{6}\)

d) Ta có:

 \(\begin{array}{l}E(X) = 0.\frac{{35}}{{210}} + 1.\frac{{105}}{{210}} + 2.\frac{{63}}{{210}} + 3.\frac{7}{{210}} = 1,2\\V(X) = {(0 - 1,2)^2}.\frac{{35}}{{210}} + {(1 - 1,2)^2}.\frac{{105}}{{210}} + {(2 - 1,2)^2}.\frac{{63}}{{210}} + {(3 - 1,2)^2}.\frac{7}{{210}} = 0,56\\\partial (X) = \sqrt {0,56}  \approx 0,75\end{array}\)

Các bài tập cùng chuyên đề

Bài 1 :

Một trò chơi sử dụng một hộp đựng 20 quả cầu có kích thước và khối lượng như nhau được ghi số từ 1 đến 20. Người chơi lấy ngẫu nhiên đồng thời 3 quả cầu trong hộp. Gọi X là số lớn nhất ghi trên 3 quả cầu đã lấy ra.

a) Lập bảng phân bố xác suất của X.

b) Người chơi thắng cuộc nếu trong 3 quả cầu lấy ra có ít nhất 1 quả cầu ghi số lớn hơn 18. Tính xác suất thắng của người chơi.

Xem lời giải >>
Bài 2 :

Một tổ có 10 học sinh nam và 6 học sinh nữ. Giáo viên chọn ngẫu nhiên đồng thời 3 học sinh. Gọi X là số học sinh nam trong 3 học sinh được chọn. Lập bảng phân bố xác suất của X.

Xem lời giải >>
Bài 3 :

Hãy nêu số thích hợp với dấu “?” để hoàn thành bảng phân bố xác suất của biến ngẫu nhiên rời rạc \(X\) trong Ví dụ 1.

Xem lời giải >>
Bài 4 :

Gieo một con xúc xắc cân đối, đồng chất liên tiếp 6 lần. Gọi \(X\) là số lần xúc xắc xuất hiện mặt 6 chấm trong 6 lần gieo liên tiếp đó.

a) Các giá trị có thể của \(X\) là gì?

b) Trước khi thực hiện việc gieo xúc xắc đó, ta có khẳng định trước được \(X\) sẽ nhận giá trị nào không?

Xem lời giải >>
Bài 5 :

Cho biến ngẫu nhiên rời rạc X với bảng phân bố xác suất như sau:

a) Tính \(V(X)\) và \(\sigma (X)\) theo định nghĩa.

b) Tính \(V(X)\) theo công thức (2).

Xem lời giải >>
Bài 6 :

Trở lại HĐ4. Gọi X và Y tương ứng là doanh thu theo phương án 1 và phương án 2. Tính độ lệch chuẩn của X và Y.

HĐ4: Một nhà đầu tư xem xét hai phương án đầu tư. Với phương án 1 thì doanh thu một năm sẽ là 8 tỉ đồng hoặc 2 tỉ đồng với xác suất tương ứng là \(\frac{1}{3}\) và \(\frac{2}{3}\). Với phương án 2 thì doanh thu một năm sẽ là 5 tỉ đồng hoặc 3 tỉ đồng với hai xác suất bằng nhau.

Xem lời giải >>
Bài 7 :

Một nhà đầu tư xem xét hai phương án đầu tư. Với phương án 1 thì doanh thu một năm sẽ là 8 tỉ đồng hoặc 2 tỉ đồng với xác suất tương ứng là \(\frac{1}{3}\) và \(\frac{2}{3}\). Với phương án 2 thì doanh thu một năm sẽ là 5 tỉ đồng hoặc 3 tỉ đồng với hai xác suất bằng nhau.

a) Hãy so sánh doanh thu trung bình của phương án 1 và phương án 2.

b) Nhà đầu tư nên chọn phương án nào?

Xem lời giải >>
Bài 8 :

Tiếp tục xét tình huống mở đầu, giả sử ở vòng 1 Minh chọn câu hỏi loại II.

a) Hỏi trung bình Minh nhận được bao nhiêu điểm?

b) Ở vòng 1 Minh nên chọn loại câu hỏi nào?

Xem lời giải >>
Bài 9 :

Giả sử số vụ vi phạm Luật Giao thông trên một đoạn đường vào tối thứ Bảy có thể là 0; 1; 2; 3; 4; 5 với các xác suất tương ứng là 0,1; 0,2; 0,25; 0,15 và 0,05. Hỏi trung bình có bao nhiêu vụ vi phạm Luật Giao thông trên đoạn đường đó và tối thứ Bảy?

Xem lời giải >>
Bài 10 :

Giả sử số vụ vi phạm Luật Giao thông trên một đoạn đường AB trong 98 buổi tối thứ Bảy được thống kê như sau: 10 tối không có vụ nào; 20 tối có 1 vụ; 23 tối có 2 vụ; 25 tối có 3 vụ; 15 tối có 4 vụ; 5 tối có 7 vụ. Hỏi trung bình có bao nhiêu vụ vi phạm Luật Giao thông trên đoạn đường B trong 98 buổi tối thứ Bảy đó?

Xem lời giải >>
Bài 11 :

Giả sử số ca cấp cứu ở một bệnh viện vào tối thứ Bảy là một biến ngẫu nhiên rời rạc X có bảng phân bố xác suất như sau:

a) Tính xác suất để xảy ra ít nhất một ca cấp cứu ở bệnh viện đó vào tối thứ Bảy.

b) Biết rằng nếu có hơn 3 ca cấp cứu thì bệnh viện phải tăng cường thêm bác sĩ trực. Tính xác suất phải tăng cường bác sĩ trực vào tối thứ Bảy ở bệnh viện đó.

c) Tính \(E\left( X \right),{\rm{ }}V\left( X \right)\)và \(\sigma \left( X \right)\).

Xem lời giải >>
Bài 12 :

Số cuộc điện thoại gọi đến một trung tâm cứu hộ trong khoảng thời gian từ 12 giờ đến 13 giờ là một biến ngẫu nhiên rời rạc X có bảng phân bố xác suất như sau:

a) Tính xác suất để xảy ra ít nhất 2 cuộc gọi đến trung tâm cứu hộ đó.

b) Tính xác suất để xảy ra nhiều nhất 3 cuộc gọi đến trung tâm cứu hộ đó.

c) Tính \(E\left( X \right),{\rm{ }}V\left( X \right)\)và \(\sigma \left( X \right)\).

Xem lời giải >>
Bài 13 :

Một túi gồm các tấm thẻ giống hệt nhau chỉ khác màu, trong đó có 10 tấm thẻ màu đỏ và 6 tấm thẻ màu xanh. Rút ngẫu nhiên đồng thời ra 3 tấm thẻ từ trong túi.

a) Gọi X là số thẻ đỏ trong ba thẻ rút ra. Lập bảng phân bố xác suất của X. Tính \(E\left( X \right).\)

b) Giả sử rút mỗi tấm thẻ màu đỏ được 5 điểm và rút mỗi tấm thẻ màu xanh được 8 điểm.

Gọi Y là số điểm thu được sau khi rút 3 tấm thẻ từ trong túi. Lập bảng phân bố xác suất của Y. 

Xem lời giải >>
Bài 14 :

Hai xạ thủ An và Bình tập bắn một cách độc lập với nhau. Mỗi người thực hiện hai phát bắn một cách độc lập. Xác suất bắn trúng bia của An và của Bình trong mỗi phát bắn tương ứng là 0.4 và 0,5.

Gọi X là số phát bắn trúng bia của An, Y là số phát bắn trúng bia của Bình.

a) Lập bảng phân bố xác suất của X, Y.

b) Tính \(E\left( X \right),E\left( Y \right),V\left( X \right),V(Y).\)

Xem lời giải >>
Bài 15 :

Trong một chiếc hộp có 10 quả cầu có kích thước và khối lượng giống nhau, trong đó có 4 quả ghi số 1; 3 quả ghi số 2; 2 quả ghi số 3 và 1 quả ghi số 4. Lấy ngẫu nhiên đồng thời hai quả cầu rồi cộng hai số trên hai quả cầu với nhau. Gọi X là kết quả thu được. Lập bảng phân bố xác suất của X. 

Xem lời giải >>
Bài 16 :

Xét phép thử T: “Tung một đồng xu cân đối và đồng chất hai lần liên tiếp”.

a) Viết không gian mẫu \(\Omega \)  gồm các kết quả có thể xảy ra đối với mặt xuất hiện của đồng xu.

b) Kí hiệu \(X\) là số lần xuất hiện mặt ngửa. Hãy nêu các giá trị của \(X\).

c) Giá trị của \(X\) có dự đoán trước được không?

Xem lời giải >>
Bài 17 :

Trong các trường hợp sau, trường hợp nào ta nhận được X là biến ngẫu nhiên rời rạc? Nếu X là biến ngẫu nhiên rời rạc, tìm tập giá trị của X.

a) Tung một đồng xu cân đối và đồng chất bốn lần. Gọi X là số lần mặt ngửa xuất hiện.

b) Gieo một xúc xắc cân đối và đồng chất ba lần. Gọi X là số lần xuất hiện mặt 6 chấm.

Xem lời giải >>
Bài 18 :

Xét phép thử T: “Tung một đồng xu cân đối và đồng chất hai lần liên tiếp.” Xét biến ngẫu nhiên rời rạc X là số lần xuất hiện mặt ngửa.

Xét các biến cố:

\(X = 0\):”Số lần xuất hiện mặt ngửa sau hai lần tung bằng 0.”

\(X = 1\):” Số lần xuất hiện mặt ngửa sau hai lần tung bằng 1.”

\(X = 2\):” Số lần xuất hiện mặt ngửa sau hai lần tung bằng 2.”

a) Tính \(P(X = 0),P(X = 1),P(X = 2)\).

b) Tìm số thích hợp cho ? trong Bảng 1:

Xem lời giải >>
Bài 19 :

Một hộp đựng 10 quả cầu có cùng kích thước và màu sắc nhưng khác nhau về khối lượng: 5 quả cầu nặng 1kg, 2 quả cầu nặng 2kg, 3 quả cầu nặng 3kg. Chọn ngẫu nhiên một quả cầu từ chiếc hộp.

a) Tính khối lượng trung bình của 10 quả cầu trên.

b) Gọi \(X\) (kg) là khối lượng của quả cầu được chọn.

Tính xác suất \({p_1} = P(X = 1),{p_2} = P(X = 2),{p_3} = P(X = 3)\) và giá trị của biểu thức \({\rm{E(X)}} = 1{p_1} + 2{p_2} + 3{p_3}.\)

c) So sánh khối lượng trung bình của 10 quả cầu và giá trị của E(X).

Xem lời giải >>
Bài 20 :

Trong Ví dụ 2, đặt \({\rm{E(X)}} = \mu .\)

a) Tính giá trị biểu thức :

\({\rm{V(X)}} = {(0 - \mu )^2}.\frac{1}{6} + {(1 - \mu )^2}.\frac{1}{2} + {(2 - \mu )^2}.\frac{3}{{10}} + {(3 - \mu )^2}.\frac{1}{{30}}\)

b) Tính \({\rm{\sigma (X)}} = \sqrt {{\rm{V(X)}}} \)

Xem lời giải >>
Bài 21 :

Một cuộc điều tra được tiến hành ở một trường trung học phổ thông như sau: Chọn ngẫu nhiên một bạn học sinh trong trường và hỏi gia đình bạn đó có bao nhiêu người. Gọi X là số người trong gia đình bạn đó. Hỏi X có phải biến ngẫu nhiên rời rạc không? Vì sao?

Xem lời giải >>
Bài 22 :

Chọn ngẫu nhiên một gia đình trong số các gia đình có hai con. Gọi X là số con gái trong gia đình đó. Hãy lập bảng phân bố xác suất của X, biết rằng xác suất sinh con gái là 0,5 và hai lần sinh là độc lập.

Xem lời giải >>
Bài 23 :

Chọn ngẫu nhiên một ngày thứ Bảy trong các ngày thứ Bảy của năm 2022 mà một cửa hàng kinh doanh ô tô có mở cửa bán hàng. Gọi X là số ô tô mà cửa hàng bán ra trong ngày thứ Bảy đó. Biết rằng bảng phân bố xác suất của biến ngẫu nhiên rời rạc X là:

Tính xác suất để trong ngày thứ Bảy đó cửa hàng bán được:

a) Đúng hai chiếc ô tô;

b) Không quá 4 chiếc ô tô;

c) Nhiều hơn 4 chiếc ô tô;

Xem lời giải >>
Bài 24 :

Học sinh khối 12 của một trường trung học phổ thông được chia thành các nhóm học tập. Chọn ngẫu nhiên một nhóm trong số các nhóm học tập đó. Gọi X là số học sinh trong nhóm được chọn ra. Biết rằng bảng phân bố xác suất của biến ngẫu nhiên rời rạc X là:

Tính kì vọng, phương sai và độ lệch chuẩn của X.

Xem lời giải >>
Bài 25 :

Một nhóm học sinh lớp 12 của một trường trung học phổ thông gồm có 10 người, trong đó có 3 học sinh lớp 12A, 4 học sinh lớp 12B, 3 học sinh từ các lớp 12 còn lại của nhà trường. Từ nhóm học sinh đó, chọn ngẫu nhiên đồng thời 3 học sinh. Gọi X là số học sinh lớp 12A trong số 3 học sinh được chọn ra.
a) Lập bảng phân bố xác suất của biến ngẫu nhiên rời rạc X.
b) Tính kì vọng, phương sai của X.
c) Tính xác suất để trong số 3 học sinh được chọn ra có ít nhất 1 học sinh lớp 12A.

Xem lời giải >>
Bài 26 :

Có hai nhóm học sinh. Nhóm thứ nhất có 5 nam và 6 nữ. Nhóm thứ hai có 5 nam và 7 nữ. Từ mỗi nhóm học sinh, ta chọn ngẫu nhiên 1 học sinh. Gọi X là số học sinh nữ trong số 2 học sinh được chọn ra.

a) Lập bảng phân bố xác suất của biến ngẫu nhiên rời rạc X.

b) Tính kì vọng, phương sai của X.

Xem lời giải >>
Bài 27 :

Một hộp chứa 10 tấm thẻ giống nhau, trong đó có 1 thẻ là thẻ may mắn. Bạn Khuê rút ngẫu nhiên từng thẻ trong hộp cho đến khi lấy được thẻ may mắn. Gọi \(X\) là số thẻ bạn Khuê đã rút cho đến khi lấy được thẻ may mắn. Hỏi \(X\) có phải là biến ngẫu nhiên rời rạc không nếu thẻ đã rút ra không được cho lại vào hộp?

Xem lời giải >>
Bài 28 :

Một hộp chứa 5 viên bi xanh và 7 viên bi đỏ có cùng kích thước và khối lượng. Các viên bi xanh được đánh số từ 1 đến 5; các viên bi đỏ được đánh số từ 1 đến 7. Lấy ra ngẫu nhiên cùng một lúc 2 viên bi từ hộp. Trong các đại lượng sau, đại lượng nào là biến ngẫu nhiên rời rạc?

a) Đại lượng \(X\) là tổng các số ghi trên hai viên bi.

b) Đại lượng \(Y\) là tích các số ghi trên hai viên bi.

c) Đại lượng \(Z\) bằng 1 nếu hai viên bi cùng màu, bằng 0 nếu hai viên bi khác màu.

Xem lời giải >>
Bài 29 :

Một hộp chứa 4 tấm thẻ cùng loại được đánh số lần lượt từ 1 đến 4. Lấy ra ngẫu nhiên đồng thời 2 thẻ từ hộp.

a) Đại lượng tổng các số viết trên 2 thẻ có thể nhận các giá trị nào?

b) Đại lượng tích các số viết trên 2 thẻ có thể nhận các giá trị nào?

Xem lời giải >>
Bài 30 :

Bạn Dung tham gia trò chơi ném phi tiêu trúng thưởng với luật chơi như sau: Ở mỗi lượt chơi, bạn Dung ném một mũi phi tiêu. Nếu bạn Dung ném được vào vòng 10 điểm, bạn Dung được thưởng 2 quả bóng bay; nếu ném được vòng 9 điểm, bạn Dung được thưởng 1 quả bóng bay. Nếu không ném được vào vòng 9 hay 10 điểm thì bạn Dung không được thưởng. Gọi \(X\) là số bóng bay bạn Dung được thưởng trong một lượt chơi. Lập bảng phân bố xác suất của \(X\) biết rằng xác suất bạn Dung ném được vào vòng 10 điểm là 0,1 và vòng 9 điểm là 0,2.

Xem lời giải >>