Đề bài

Trong hình vẽ bên dưới có \(BE//AC,CF//AB\). Biết \(\angle A = {80^0},\angle ABC = {60^0}.\)

 

a) Chứng minh rằng \(\angle ABE = \angle ACF\);

b) Tính số đo của các góc \(BCF\) và \(ACB\).

c) Gọi \(Bx,Cy\) lần lượt là tia phân giác của các góc \(ABE\) và \(ACF\). Chứng minh rằng \(Bx//Cy\).

 

Phương pháp giải

a) Vận dụng tính chất của hai đường thẳng song song.

b) Hai góc kề bù có tổng số đo bằng \({180^0}\).

Vận dụng định lý tổng ba góc trong một tam giác.

c) Vận dụng dấu hiệu nhận biết của hai đường thẳng song song.

 

Lời giải của GV Loigiaihay.com

 

a) Vì \(BE//AC\) (giả thiết) nên \(\angle ABE = \angle BAC\) (hai góc so le trong)

Vì \(AB//CF\) (giả thiết) nên \(\angle ACF = \angle BAC\) (hai góc so le trong)

Suy ra \(\angle ABE = \angle ACF\) (vì cùng bằng \(\angle BAC\))

b) Vì \(AB//CF\) (giả thiết) nên \(\angle ABC = \angle FCx = {60^0}\) (hai góc đồng vị)

Ta có \(\angle BCF\) và \(\angle FCx\) là hai góc kề bù nên \(\angle BCF + \angle FCx = {180^0}\)

\(\begin{array}{l} \Rightarrow \angle BCF + {60^0} = {180^0}\\ \Rightarrow \angle BCF = {180^0} - {60^0} = {120^0}\end{array}\)

Xét tam giác \(ABC\) có: \(\angle BAC + \angle ABC + \angle BCA = {180^0}\) (định lí tổng ba góc trong một tam giác)

\(\begin{array}{l} \Rightarrow {80^0} + {60^0} + \angle ACB = {180^0}\\ \Rightarrow {140^0} + \angle ACB = {180^0}\\ \Rightarrow \angle ACB = {180^0} - {140^0} = {40^0}\end{array}\)

Vậy \(\angle BCF = {120^0},\angle ACB = {40^0}\).

c) Ta có:

\(Bx\) là tia phân giác của \(\angle ABE\) (giả thiết) suy ra \(\angle ABx = \dfrac{{\angle ABE}}{2} = \dfrac{{{{80}^0}}}{2} = {40^0}\) (tính chất tia phân giác của một góc)

\(Cy\) là tia phân giác của \(\angle ACF\) (giả thiết) suy ra \(\angle FCy = \dfrac{{ACF}}{2} = \dfrac{{{{80}^0}}}{2} = {40^0}\) (tính chất tia phân giác của một góc)

Ta có:

\(\angle xAB\) và \(\angle ABC\) là hai góc kề nhau nên \(\angle BCx = \angle xAB + \angle ABC = {40^0} + {60^0} = {100^0}\)

\(\angle yCF\) và \(\angle FCz\) là hai góc kề nhau nên \(\angle yCz = \angle yCF + \angle FCz = {40^0} + {60^0} = {100^0}\)

Vì \(\angle BCx = \angle yCz = {100^0}\) mà hai góc này ở vị trí đồng vị nên \(Bx//Cy\) (dấu hiệu nhận biết hai đường thẳng song song).