Trong hình vẽ bên dưới có \(BE//AC,CF//AB\). Biết \(\angle A = {80^0},\angle ABC = {60^0}.\)
a) Chứng minh rằng \(\angle ABE = \angle ACF\);
b) Tính số đo của các góc \(BCF\) và \(ACB\).
c) Gọi \(Bx,Cy\) lần lượt là tia phân giác của các góc \(ABE\) và \(ACF\). Chứng minh rằng \(Bx//Cy\).
a) Vận dụng tính chất của hai đường thẳng song song.
b) Hai góc kề bù có tổng số đo bằng \({180^0}\).
Vận dụng định lý tổng ba góc trong một tam giác.
c) Vận dụng dấu hiệu nhận biết của hai đường thẳng song song.
a) Vì \(BE//AC\) (giả thiết) nên \(\angle ABE = \angle BAC\) (hai góc so le trong)
Vì \(AB//CF\) (giả thiết) nên \(\angle ACF = \angle BAC\) (hai góc so le trong)
Suy ra \(\angle ABE = \angle ACF\) (vì cùng bằng \(\angle BAC\))
b) Vì \(AB//CF\) (giả thiết) nên \(\angle ABC = \angle FCx = {60^0}\) (hai góc đồng vị)
Ta có \(\angle BCF\) và \(\angle FCx\) là hai góc kề bù nên \(\angle BCF + \angle FCx = {180^0}\)
\(\begin{array}{l} \Rightarrow \angle BCF + {60^0} = {180^0}\\ \Rightarrow \angle BCF = {180^0} - {60^0} = {120^0}\end{array}\)
Xét tam giác \(ABC\) có: \(\angle BAC + \angle ABC + \angle BCA = {180^0}\) (định lí tổng ba góc trong một tam giác)
\(\begin{array}{l} \Rightarrow {80^0} + {60^0} + \angle ACB = {180^0}\\ \Rightarrow {140^0} + \angle ACB = {180^0}\\ \Rightarrow \angle ACB = {180^0} - {140^0} = {40^0}\end{array}\)
Vậy \(\angle BCF = {120^0},\angle ACB = {40^0}\).
c) Ta có:
\(Bx\) là tia phân giác của \(\angle ABE\) (giả thiết) suy ra \(\angle ABx = \dfrac{{\angle ABE}}{2} = \dfrac{{{{80}^0}}}{2} = {40^0}\) (tính chất tia phân giác của một góc)
\(Cy\) là tia phân giác của \(\angle ACF\) (giả thiết) suy ra \(\angle FCy = \dfrac{{ACF}}{2} = \dfrac{{{{80}^0}}}{2} = {40^0}\) (tính chất tia phân giác của một góc)
Ta có:
\(\angle xAB\) và \(\angle ABC\) là hai góc kề nhau nên \(\angle BCx = \angle xAB + \angle ABC = {40^0} + {60^0} = {100^0}\)
\(\angle yCF\) và \(\angle FCz\) là hai góc kề nhau nên \(\angle yCz = \angle yCF + \angle FCz = {40^0} + {60^0} = {100^0}\)
Vì \(\angle BCx = \angle yCz = {100^0}\) mà hai góc này ở vị trí đồng vị nên \(Bx//Cy\) (dấu hiệu nhận biết hai đường thẳng song song).