Vẽ các hypebol sau:
a) \(\frac{{{x^2}}}{{10}} - \frac{{{y^2}}}{6} = 1\)
b) \(\frac{{{x^2}}}{4} - \frac{{{y^2}}}{3} = 1\)
c) \(\frac{{{x^2}}}{{64}} - \frac{{{y^2}}}{{36}} = 1\)
Bước 1: Khởi động phần mềm Geogebra
Bước 2: Nhập phương trình hypebol \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) theo cú pháp
x^2/a^2 - y^2/b^2 = 1 vào vùng nhập lệnh
Bước 3: Quan sát hình vẽ xuất hiện trên vùng làm việc
Thực hiện các bước đã nêu ở phương pháp ta có
a) Nhập phương trình hypebol theo cú pháp x^2/10 - y^2/6 = 1 vào vùng nhập lệnh ta được hình hypebpl dưới đây:
b) Nhập phương trình hypebol theo cú pháp x^2/4 - y^2/3 = 1 vào vùng nhập lệnh ta được hình hypebol dưới đây:
c) Nhập phương trình hypebol theo cú pháp x^2/64 - y^2/36 = 1 vào vùng nhập lệnh ta được hình hypebol dưới đây:
Các bài tập cùng chuyên đề
Vẽ hình trong mỗi trường hợp sau:
a) Vẽ hypebol biết hai tiêu điểm \({F_1}( - 5;0),{F_2}(5;0)\) và điểm \((3;0)\) thuộc hypebol;
b) Vẽ parabol biết phương trình chính tắc: \({y^2} = 5x\);
c) Vẽ elip tại các giá trị \(a = 3,b = 1\) và \(a = 6,b = 3,5.\)
Thiết kế một đường hầm có mặt cắt hình nửa elip cao 4 m, rộng 10 m.
Vẽ các elip sau:
a) \(\frac{{{x^2}}}{{10}} + \frac{{{y^2}}}{4} = 1\)
b) \(\frac{{{x^2}}}{{12}} + \frac{{{y^2}}}{3} = 1\)
c) \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{36}} = 1\)
Thiết kế một chóa đèn có mặt cắt hình parabol với kích thước được cho trong hình sau:
Vẽ các parabol sau:
a) \({y^2} = 16x\)
b) \({y^2} = x\)
c) \({y^2} = 32x\)