Đề bài

Lớp 10A có 20 bạn nữ, 25 bạn nam. Lớp 10B có 24 bạn nữ, 21 bạn nam. Chọn ngẫu nhiên từ mỗi lớp ra 2 bạn đi tập văn nghệ. Tính xác suất của mỗi biến cố sau:

a) “Trong 4 bạn được chọn có ít nhất 1 bạn nam”.

b) “Trong 4 bạn được chọn có đủ cả nam và nữ”.

Phương pháp giải

Bước 1: Xác định không gian mẫu

Bước 2: Xác định số kết quả thuận lợi cho biến cố đó, hoặc xác định biến cố đối

Bước 3: Tính xác suất bằng công thức \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\) hoặc \(P\left( A \right) = 1 - \frac{{n\left( {\overline A } \right)}}{{n\left( \Omega  \right)}}\)

Lời giải của GV Loigiaihay.com

Tổng số khả năng có thể xảy ra của phép thử là \(n\left( \Omega  \right) = C_{45}^2.C_{45}^2\)

a) Gọi A là biến cố “Trong 4 bạn được chọn có ít nhất 1 bạn nam”, ta có biến cố đối \(\overline A \): “Trong 4 bạn được chọn không có bạn nam nào”

\(\overline A \) xảy ra khi các bạn được chọn đều là nữ. Số kết quả thuận lợi cho biến cố \(\overline A \) là \(n\left( {\overline A } \right) = C_{20}^2.C_{24}^2\)

Xác suất của biến cố \(\overline A \) là \(P\left( {\overline A } \right) = \frac{{n\left( {\overline A } \right)}}{{n\left( \Omega  \right)}} = \frac{{C_{20}^2.C_{24}^2}}{{C_{45}^2.C_{45}^2}} = \frac{{874}}{{16335}}\)

Suy ra, xác suất của biến cố A là \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{874}}{{16335}} = \frac{{15461}}{{16335}}\)

b) Gọi A là biến cố “Trong 4 bạn được chọn có đủ cả nam và nữ” ta có biến cố đối \(\overline A \): “Trong 4 bạn được chọn đều là nữ hoặc đều là nam”

\(\overline A \) xảy ra khi các bạn được chọn đều là nữ hoặc nam. Số kết quả thuận lợi cho biến cố \(\overline A \) là \(n\left( {\overline A } \right) = C_{20}^2.C_{24}^2 + C_{25}^2.C_{21}^2\)

Xác suất của biến cố \(\overline A \) là \(P\left( {\overline A } \right) = \frac{{n\left( {\overline A } \right)}}{{n\left( \Omega  \right)}} = \frac{{C_{20}^2.C_{24}^2 + C_{25}^2.C_{21}^2}}{{C_{45}^2.C_{45}^2}} = \frac{{1924}}{{16335}}\)

Suy ra, xác suất của biến cố A là \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{1924}}{{16335}} = \frac{{14411}}{{16335}}\)

Các bài tập cùng chuyên đề

Bài 1 :

Có ba hộp A, B, C. Hộp A có chứa ba thẻ mang số 1, số 2 và số 3. Hộp B chứa hai thẻ mang số 2 và số 3. Hộp C chứa hai thẻ mang số 1 và số 2. Từ mỗi hộp ta rút ra ngẫu nhiên một thẻ.

a) Vẽ sơ đồ hình cây để mô tả các phần tử của không gian mẫu.

b) Gọi M là biến cố: “Trong ba thẻ rút ra có ít nhất một thẻ số 1". Biến cố \(\overline M \)  là tập con nào của không gian mẫu? 

c) Tính P(M) và P(\(\overline M \)).

Xem lời giải >>
Bài 2 :

Cho E là một biến cố và \(\Omega \) là không gian mẫu. Tính n(\(\overline E \)) theo n(\(\Omega \)) và n(E).

Xem lời giải >>
Bài 3 :

Chọn ngẫu nhiên một gia đình có ba con và quan sát giới tính của ba người con này.

Tính xác suất của các biến cố sau:

a) A: “Con đầu là gái".

b) B: “Có ít nhất một người con trai".

Xem lời giải >>
Bài 4 :

Gieo lần lượt hai con xúc xắc cân đối. Tính xác suất để ít nhất một con xúc xắc xuất hiện mặt 6 châm.

Xem lời giải >>
Bài 5 :

Gieo đồng thời hai con xúc xắc cân đối. Tính xác suất để:

a) Tổng số chấm trên hai con xúc xắc bằng 8.

b) Tổng số chấm trên hai con xúc xắc nhỏ hơn 8.

Xem lời giải >>
Bài 6 :

Chọn ngẫu nhiên 4 viên bị từ một túi đựng 4 viên bị đỏ và 6 viên bị xanh đôi một khác nhau. Gọi A là biến cố: “Trong 4 viên bi đỏ có cả bị đỏ và cả bi xanh”. Tính P(A) và P(\(\overline A \)).

Xem lời giải >>
Bài 7 :

Trong hộp có 3 bi xanh, 4 bi đỏ và 5 bi vàng có kích thước và khối lượng như nhau. Lấy ngẫu nhiên từ hộp 4 viên bi. Tính xác suất để trong 4 viên bi lấy ra:

a) Có ít nhất 1 bi xanh.

b) Có ít nhất 2 bi đỏ.

Xem lời giải >>
Bài 8 :

Gieo đồng thời 3 con xúc xắc cân đối và đồng chất. Tính xác suất của các biến cố:

a) “Tích các số chấm ở mặt xuất hiện trên ba con xúc xắc chia hết cho 3”.

b) “Tổng các số chấm ở mặt xuất hiện trên ba con súc sắc lớn hơn 4”.

Xem lời giải >>
Bài 9 :

Tung ba đồng xu cân đối và đồng chất. Xác định biến cố đối của mỗi biến cố sau và tính xác xuất của nó:

a) “Xuất hiện ba mặt sấp”.

b) “Xuất hiện ít nhất một mặt sấp”.

Xem lời giải >>
Bài 10 :

Trong hộp có một số quả bóng màu xanh và màu đỏ có kích thước và khối lượng như nhau. An nhận thấy nếu lấy ngẫu nhiên 2 quả bóng từ hộp thì xác suất để 2 quả bóng này khác nhau là 0,6. Hỏi xác suất để lấy ra hai quả bóng cùng màu là bao nhiêu?

Xem lời giải >>
Bài 11 :

Năm bạn Nhân, Lễ, Nghĩa, Trí và Tín sắp xếp một cách ngẫu nhiên thành một hàng ngang để chụp ảnh. Tính xác suất của biến cố:

a) “Nhân và Tín không đứng cạnh nhau”.

b) “Trí không đứng ở đầu hàng”.

Xem lời giải >>
Bài 12 :

Gieo 4 đồng xu cân đối và đồng chất. Xác định biến cố đối của mỗi biến cố sau và tính xác suất của nó.

a) “Xuất hiện ít nhất ba mặt sấp”.

b) “Xuất hiện ít nhất một mặt ngửa”.

Xem lời giải >>
Bài 13 :

Cho tập hợp A gồm 2022 số nguyên dương liên tiếp: 1, 2, 3, …, 2022. Chọn ngẫu nhiên 2 số thuộc tập hợp A. Xác suất của biến cố “Tích 2 số được chọn là số chẵn” là:

A. \(\frac{{C_{1011}^2}}{{C_{2022}^2}}\)               

B. \(1 - \frac{{C_{1011}^2}}{{C_{2022}^2}}\)            

C. \(\frac{1}{2}\)                   

D. \(1 - \frac{{C_{2022}^2}}{{C_{4022}^2}}\)

Xem lời giải >>
Bài 14 :

Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên một chiếc thẻ từ trong hộp, ghi lại số của thẻ được rút ra và bỏ lại thẻ đó vào hộp. Xét phép thử “Rút ngẫu nhiên liên tiếp 3 chiếc thẻ trong hộp”.

Tính xác suất của biến cố A: “Tích các số ghi trên thẻ ở 3 lần rút là số chẵn”.

Xem lời giải >>
Bài 15 :

Chọn ngẫu nhiên 10 số tự nhiên từ dãy các số tự nhiên từ 1 đến 100. Xác đinh biến cố đối của các biến cố sau:

A: “Có ít nhất 3 số lẻ trong 10 số được chọn”.

B: “Tất cả 10 số được chọn đều là số chẵn”.

C: “Có không quá 5 số chẵn trong 10 số được chọn”.

Xem lời giải >>
Bài 16 :

Một hộp kín có 1 quả bóng xanh và 5 quả bóng đỏ có kích thước và khối lượng bằng nhau. Hỏi Dũng cần lấy ra từ hộp ít nhất bao nhiêu quả bóng để xác suất lấy được quả bóng xanh lớn hơn 0,5?

Xem lời giải >>
Bài 17 :

Một hộp chứa 2 loại bi xanh và đỏ. Lấy ra ngẫu nhiên từ hộp 1 viên bi. Biết xác suất lấy ra bi đỏ là 0,3. Xác suất lấy được bi xanh là:

A. 0,3          

B. 0,5          

C. 0,7          

D. 0,09

Xem lời giải >>
Bài 18 :

Gieo một con xúc xắc bốn mặt cân đối và đồng chất ba lần. Xác suất xảy ra biến cố “Có ít nhất 1 lần xuất hiện đỉnh ghi số 4” là:

A. \(\frac{1}{4}\)       

B. \(\frac{{27}}{{64}}\)

C. \(\frac{{37}}{{64}}\)

D. \(\frac{3}{4}\)

Xem lời giải >>
Bài 19 :

Chọn ra ngẫu nhiên 2 người từ 35 người trong lớp của Hùng. Xác suất xảy ra biến cố “Hùng được chọn” là:

A. \(\frac{2}{{35}}\)   

B. \(\frac{1}{{34}}\)    

C. \(\frac{1}{{35}}\)    

D. \(\frac{1}{{17}}\)

Xem lời giải >>
Bài 20 :

Xếp 4 quyển sách toán và 2 quyển sách văn thành 1 hàng ngang trên giá sách một cách ngẫu nhiên. Xác suất xảy ra biến cố “2 quyển sách văn không được xếp cạnh nhau” là:

A. \(\frac{1}{2}\)       

B. \(\frac{2}{3}\)       

C. \(\frac{1}{2}\)       

D. \(\frac{1}{5}\)

Xem lời giải >>
Bài 21 :

Một túi đựng 3 viên bị trắng và 5 viên bị đen. Chọn ngẫu nhiên 3 viên bi. Xác suất để trong 3 viên bị đó có cả bi trắng và bị đen là

A. \(\frac{{13}}{{15}}\).              

B. \(\frac{9}{{11}}\).                     

C. \(\frac{{43}}{{56}}\).              

D. \(\frac{{45}}{{56}}\).

Xem lời giải >>