Đề bài

Cho hình vẽ, biết \(AE\,//\,BD,\,\angle ABD = {90^o},\,\angle AED = {55^o}.\) Số đo góc \(\angle BAE\) và \(\angle BDE\) lần lượt là:

 

A. \({90^o},\,{55^o}\)

B. \({90^o},\,{125^o}\)

C. \({55^o},\,{90^o}\)

D. \({35^o},\,{55^o}\)    

 

Phương pháp giải

- Nếu một đường thẳng cắt hai đường thẳng song song thì:

          + Hai góc so le trong bằng nhau;

          + Hai góc đồng vị bằng nhau.

- Dấu hiệu nhận biết hai đường thẳng song song: Nếu đường thẳng c cắt đường thẳng phân biệt ab, và trong các góc tạo thành có một cặp góc so le trong bằng nhau hoặc một cặp góc đồng vị bằng hai thì a và b song song với nhau.

- Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì sẽ vuông góc với đường thẳng còn lại.

 

Lời giải của GV Loigiaihay.com

 

Ta có \(\angle ABD = {90^o}\left( {gt} \right) \Rightarrow AB \bot BD\)

Mà \(AE\,//\,BD\,\left( {gt} \right)\)

\( \Rightarrow AE \bot AB \Rightarrow \angle BAE = {90^o}\)

Vì \(AE\,//\,BD \Rightarrow \angle EDx = \angle AED = {55^o}\) (đối đỉnh)

Mà \(\angle BDE + \angle EDx = {180^o}\) (hai góc kề bù)

\( \Rightarrow \angle BDE = {180^o} - {55^o} = {125^o}\)

Chọn B.