Tính tích có hướng của hai véc tơ \(\overrightarrow u \left( {0;1; - 1} \right),\overrightarrow v \left( {1; - 1; - 1} \right)\).
-
A.
\(\overrightarrow 0 \)
-
B.
\(\left( { - 2; - 1; - 1} \right)\)
-
C.
\(\left( {2;1;1} \right)\)
-
D.
\(\left( { - 1; - 2; - 1} \right)\)
Sử dụng công thức tích có hướng:
\(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}\begin{array}{l}{y_1}\\{y_2}\end{array}&\begin{array}{l}{z_1}\\{z_2}\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}{z_1}\\{z_2}\end{array}&\begin{array}{l}{x_1}\\{x_2}\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}{x_1}\\{x_2}\end{array}&\begin{array}{l}{y_1}\\{y_2}\end{array}\end{array}} \right|} \right) = \left( {{y_1}{z_2} - {y_2}{z_1};{z_1}{x_2} - {z_2}{x_1};{x_1}{y_2} - {x_2}{y_1}} \right)\)
Ta có:
\(\left[ {\overrightarrow u ,\overrightarrow v } \right] = \left( {\left| {\begin{array}{*{20}{c}}\begin{array}{l}1\\ - 1\end{array}&\begin{array}{l} - 1\\ - 1\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l} - 1\\ - 1\end{array}&\begin{array}{l}0\\1\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}0\\1\end{array}&\begin{array}{l}1\\ - 1\end{array}\end{array}} \right|} \right) \)
$= \left( { - 1 - 1; - 1 - 0;0 - 1} \right) = \left( { - 2; - 1; - 1} \right)$
Đáp án : B
Một số em sẽ chọn nhầm đáp án D vì áp dụng nhầm công thức \(\overrightarrow u = \left( {\left| {\begin{array}{*{20}{c}}\begin{array}{l}{x_1}\\{x_2}\end{array}&\begin{array}{l}{y_1}\\{y_2}\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}{y_1}\\{y_2}\end{array}&\begin{array}{l}{z_1}\\{z_2}\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}{z_1}\\{z_2}\end{array}&\begin{array}{l}{x_1}\\{x_2}\end{array}\end{array}} \right|} \right)\) là sai.




Danh sách bình luận