Một lớp có 40 học sinh, trong đó có 23 học sinh thích bóng chuyền, 18 học sinh thích bóng rổ, 26 học sinh thích bóng chuyền hoặc bóng rổ hoặc cả hai. Chọn ngẫu nhiên một học sinh trong lớp.
Xác suất để chọn được học sinh không thích cả bóng chuyền và bóng rổ là
A. \(\frac{{9}}{{20}}.\)
B. \(\frac{{7}}{{20}}.\)
C. \(\frac{{19}}{{40}}.\)
D. \(\frac{{21}}{{40}}.\)
Công thức cộng xác suất \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right)\).
Công thức xác suất của biến cố đối \(P\left( A \right) = 1 - P\left( {\overline A } \right)\).
Số học sinh thích cả bóng chuyền và bóng rổ là: 23 + 18 – 26 = 15 (học sinh).
Gọi A là biến cố “Học sinh thích bóng chuyền”; B là biến cố “Học sinh thích bóng rổ”; E là biến cố “Học sinh không thích cả bóng chuyền và bóng rổ”.
Khi đó \(\overline E \) là biến cố “Học sinh thích bóng chuyền hoặc bóng rổ”.
Ta có \(\overline E = A \cup B.\)
\(P\left( A \right) = \frac{{23}}{{40}},P\left( B \right) = \frac{{18}}{{40}} = \frac{9}{{20}},P\left( {AB} \right) = \frac{{15}}{{40}} = \frac{3}{8}\).
\(\begin{array}{l}P\left( {\overline E } \right) = P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{{23}}{{40}} + \frac{9}{{20}} - \frac{3}{8} = \frac{{13}}{{20}}\\ \Rightarrow P\left( E \right) = 1 - P\left( {\overline E } \right) = 1 - \frac{{13}}{{20}} = \frac{7}{{20}}\end{array}\).
Vậy xác suất để chọn được học sinh không thích cả bóng chuyền và bóng rổ là \(\frac{7}{{20}}\).
Đáp án B
Các bài tập cùng chuyên đề
Một hộp đựng 5 quả cầu màu xanh và 3 quả cầu màu đỏ, có cùng kích thước và khối lượng. Chọn ngẫu nhiên hai quả cầu trong hộp. Tính xác suất để chọn được hai quả cầu có cùng màu.
Giải quyết bài toán trong tình huống mở đầu.
Tại tỉnh X, thống kê cho thấy trong số những người trên 50 tuổi có 8,2% mắc bệnh tim; 12,5% mắc bệnh huyết áp và 5,7% mắc cả bệnh tim và bệnh huyết áp. Từ đó, ta có thể tính được tỉ lệ dân cư trên 50 tuổi của tỉnh X không mắc cả bệnh tim và bệnh huyết áp hay không?
Gợi ý. Chọn ngẫu nhiên một người dân trên 50 tuổi của tỉnh X. Gọi A là biến cố “Người đó mắc bệnh tim”; B là biến cố “Người đó mắc bệnh huyết áp”; E là biến cố “Người đó không mắc cả bệnh tim và bệnh huyết áp”. Khi đó \(\overline E \) là biến cố “Người đó mắc bệnh tim hoặc mắc bệnh huyết áp". Ta có \(\overline E = A \cup B.\) Áp dụng công thức cộng xác suất và công thức xác suất của biến cố đối để tính \(P\left( E \right).\)
Phỏng vấn 30 học sinh lớp 11A về môn thể thao yêu thích thu được kết quả có 19 bạn thích môn Bóng đá, 17 bạn thích môn Bóng bàn và 15 bạn thích cả hai môn đó. Chọn ngẫu nhiên một học sinh của lớp 11A. Tính xác suất để chọn được học sinh thích ít nhất một trong hai môn Bóng đá hoặc Bóng bàn.
Tại sao công thức cộng xác suất cho hai biến cố xung khắc là hệ quả của công thức cộng xác suất?
Ở một trường trung học phổ thông X, có 19% học sinh học khá môn Ngữ văn, 32% học sinh học khá môn Toán, 7% học sinh học khá cả hai môn Ngữ văn và Toán. Chọn ngẫu nhiên một học sinh của trường X. Xét hai biến cố sau:
A: “Học sinh đó học khá môn Ngữ văn”;
B: “Học sinh đó học khá môn Toán”.
a) Hoàn thành các mệnh đề sau bằng cách tìm cụm từ thích hợp thay cho dấu “?”.
\(P\left( A \right)\) là tỉ lệ ...(?)...
\(P\left( {AB} \right)\) là...(?)...
\(P\left( B \right)\) là ...(?)...
\(P\left( {A \cup B} \right)\) là ...(?)...
b) Tại sao để tính \(P\left( {A \cup B} \right)\) ta không áp dụng được công thức \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\)?
Một hộp đựng 8 viên bi màu xanh và 6 viên bi màu đỏ, có cùng kích thước và khối lượng. Bạn Sơn lấy ngẫu nhiên một viên bi từ hộp (lấy xong không trả lại vào hộp). Tiếp đó đến lượt bạn Tùng lấy ngẫu nhiên một viên bi từ hộp đó. Tính xác suất để bạn Tùng lấy được viên bi màu xanh.
Lớp 11A của một trường có 40 học sinh, trong đó có 14 bạn thích nhạc cổ điển, 13 bạn thích nhạc trẻ và 5 bạn thích cả nhạc cổ điển và nhạc trẻ. Chọn ngẫu nhiên một bạn trong lớp. Tính xác suất để:
a) Bạn đó thích nhạc cổ điển hoặc nhạc trẻ;
b) Bạn đó không thích cả nhạc cổ điển và nhạc trẻ.
Một khu phố có 50 hộ gia đình nuôi chó hoặc nuôi mèo, trong đó có 18 hộ nuôi chó, 16 hộ nuôi mèo và 7 hộ nuôi cả chó và mèo. Chọn ngẫu nhiên một hộ trong khu phố trên. Tính xác suất để:
a) Hộ đó nuôi chó hoặc nuôi mèo;
b) Hộ đó không nuôi cả chó và mèo.
Một nhà xuất bản phát hành hai cuốn sách A và B. Thống kê cho thấy có 50% người mua sách A; 70% người mua sách B; 30% người mua cả sách A và sách B. Chọn ngẫu nhiên một người mua. Tính xác suất để:
a) Người mua đó mua ít nhất một trong hai sách A hoặc B.
b) Người mua đó không mua cả sách A và sách B.
Tại các trường trung học phổ thông của một tỉnh, thống kê cho thấy có 63% giáo viên môn Toán tham khảo bộ sách giáo khoa A, 56% giáo viên môn Toán tham khảo bộ sách giáo khoa B và 28,5% giáo viên môn Toán tham khảo cả hai bộ sách giáo khoa A và B. Tính tỉ lệ giáo viên môn Toán các trường trung học phổ thông của tỉnh đó không tham khảo cả hai bộ sách giáo khoa A và B.
Tại một hội thảo quốc tế có 50 nhà khoa học, trong đó có 31 người thành thạo tiếng Anh, 21 người thành thạo tiếng Pháp và 5 người thành thạo cả tiếng Anh và tiếng Pháp. Chọn ngẫu nhiên một người trong hội thảo.
Xác suất để người được chọn thành thạo ít nhất một trong hai thứ tiếng Anh hoặc Pháp là
A. \(\frac{{47}}{{50}}.\)
B. \(\frac{{37}}{{50}}.\)
C. \(\frac{{39}}{{50}}.\)
D. \(\frac{{41}}{{50}}.\)
Một lớp có 40 học sinh, trong đó có 23 học sinh thích bóng chuyền, 18 học sinh thích bóng rổ, 26 học sinh thích bóng chuyền hoặc bóng rổ hoặc cả hai. Chọn ngẫu nhiên một học sinh trong lớp.
Xác suất để chọn được học sinh thích bóng chuyền và không thích bóng rổ là
A. \(\frac{7}{{40}}.\)
B. \(\frac{9}{{40}}.\)
C. \(\frac{1}{{5}}.\)
D. \(\frac{{11}}{{40}}.\)
Một đoàn khách du lịch gồm 31 người, trong đó có 7 người đến từ Hà Nội, 5 người đến từ Hải Phòng. Chọn ngẫu nhiên một người trong đoàn. Tính xác suất để người đó đến từ Hà Nội hoặc đến từ Hải Phòng.
Tại một hội thảo quốc tế có 50 nhà khoa học, trong đó có 31 người thành thạo tiếng Anh, 21 người thành thạo tiếng Pháp và 5 người thành thạo cả tiếng Anh và tiếng Pháp. Chọn ngẫu nhiên một người trong hội thảo.
Xác suất để người được chọn không thành thạo cả hai thứ tiếng Anh hay Pháp là
A. \(\frac{7}{{50}}.\)
B. \(\frac{3}{{50}}.\)
C. \(\frac{9}{{50}}.\)
D. \(\frac{{11}}{{50}}.\)
Cho hai biến cố \(A\) và \(B\) độc lập với nhau. Biết \(P\left( A \right) = 0,9\) và \(P\left( B \right) = 0,6\). Hãy tính xác suất của biến cố \(A \cup B\).
Rút ngẫu nhiên 1 lá bài từ bộ bài tây 52 lá. Tính xác suất của biến cố “Lá bài được chọn có màu đỏ hoặc là lá có số chia hết cho 5”.
Hãy trả lời câu hỏi ở Hoạt động mở đầu.
Một hộp chứa 5 quả bóng xanh, 6 quả bóng đỏ và 2 quả bóng vàng có cùng kích thước và khối lượng. Chọn ra ngẫu nhiên từ hộp 3 quả bóng. Tính xác suất của các biến cố:
a) “Cả 3 quả bóng lấy ra đều có cùng màu”.
b) “Có ít nhất 2 quả bóng xanh trong 3 quả bóng lấy ra”.
Lấy ra ngẫu nhiên 2 quả bóng từ một hộp chứa 5 quả bóng xanh và 4 quả bóng đỏ có kích thước và khối lượng như nhau. Xác suất của biến cố “Hai bóng lấy ra có cùng màu” là
A. \(\frac{1}{9}\).
B. \(\frac{2}{9}\).
C. \(\frac{4}{9}\).
D. \(\frac{5}{9}\).
Một hộp có 5 quả bóng xanh, 6 quả bóng đỏ và 4 quả bóng vàng có kích thước và khối lượng như nhau. Chọn ra ngẫu nhiên từ hộp 4 quả bóng. Tính xác suất của các biến cố:
\(A\): “Cả 4 quả bóng lấy ra có cùng màu”.
\(B\): “Trong 4 bóng lấy ra có đủ cả 3 màu”.
Nếu A và B là hai biến cố thì \(P\left( {A \cup B} \right)\) bằng:
A. \(P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right).\)
B. \(P\left( A \right) - P\left( B \right) - P\left( {A \cap B} \right).\)
C. \(P\left( A \right).P\left( B \right) - P\left( {A \cap B} \right).\)
D. \(P\left( A \right).P\left( B \right) + P\left( {A \cap B} \right).\)
Nếu A và B là hai biến cố xung khắc thì \(P\left( {A \cup B} \right)\) bằng:
A. \(P\left( A \right).P\left( B \right).\)
B. \(P\left( A \right) - P\left( B \right).\)
C. \(P\left( A \right) + P\left( {A \cap B} \right).\)
D. \(P\left( A \right) + P\left( B \right).\)
Trong một công ty có 40 nhân viên, trong đó có 19 người thích chơi bóng bàn, 20 người thích chơi cầu lông, 8 người không thích chơi cả cầu lông và bóng bàn. Chọn ngẫu nhiên một nhân viên trong công ty đó. Tính xác suất để người đó:
a) Thích chơi ít nhất một trong hai môn bóng bàn và cầu lông.
b) Thích chơi cầu lông và không thích chơi bóng bàn.
c) Thích chơi bóng bàn và không thích chơi cầu lông.
d) Thích chơi đúng một trong hai môn.
Trong một căn phòng có 36 người, trong đó có 25 người họ Nguyễn và 11 người họ Trần. Chọn ngẫu nhiên hai người trong phòng đó. Tính xác suất để hai người được chọn có cùng họ.
Một nhóm có 50 người được phỏng vấn họ đã mua cành đào hay cây quất vào dịp Tết vừa qua, trong đó có 31 người mua cành đào, 12 người mua cây quất và 5 người mua cả cành đào và cây quất. Chọn ngẫu nhiên một người. Tính xác suất để người đó:
a) Mua cành đào hoặc cây quất.
b) Mua cành đào và không mua cây quất.
c) Không mua cành đào và không mua cây quất.
d) Mua cây quất và không mua cành đào.
Một vận động viên thi bắn súng. Biết rằng xác suất để vận động viên bắn trúng vòng 10 là 0,2; bắn trúng vòng 9 là 0,25 và bắn trúng vòng 8 là 0,3. Nếu bắn trúng vòng \(k\) thì được \(k\) điểm. Vận động viên đạt huy chương vàng nếu được 20 điểm, đạt huy chương bạc nếu được 19 điểm và đạt huy chương đồng nếu được 18 điểm. Vận động viên thực hiện bắn hai lần và hai lần bắn độc lập với nhau. Xác suất để vận động viên đạt được huy chương bạc là
A. 0,15.
B. 0,1.
C. 0,2.
D. 0,12.
Trong một khu dân cư, tỉ lệ gia đình nuôi chó là 0,2; tỉ lệ gia đình nuôi mèo là 0,25; tỉ lệ gia đình nuôi cả chó và mèo là 0,05. Chọn ngẫu nhiên một gia đình trong khu dân cư đó, xác suất để gia đình được chọn không nuôi con vật nào trong hai con vật chó và mèo gần nhất với giá trị nào sau đây?
Trong một cuộc gặp mặt có 63 đoàn viên tham dự, trong đó có 25 người đến từ miền Bắc, 19 người đến từ miền Nam và 19 người đến từ miền Trung.
a) Gặp ngẫu nhiên 1 đoàn viên trong cuộc gặp mặt, tính xác suất của biến cố “Đoàn viên được gặp đến từ miền Nam hoặc miền Trung”.
b) Gặp ngẫu nhiên 2 đoàn viên trong cuộc gặp mặt, tính xác suất của biến cố “Hai đoàn viên được gặp cùng đến từ miền Bắc hoặc cùng đến từ miền Nam”.
Một túi chứa 2 viên bi xanh, 5 viên bi đỏ và 3 viên bi vàng có cùng kích thước và khối lượng. Chọn ra ngẫu nhiên 3 viên bi từ túi. Tính xác suất của các biến cố:
a) “Cả 3 viên bi lấy ra đều có cùng màu”;
b) “Có không quá 1 viên bi xanh trong 3 viên bi lấy ra”;
c) “Có đúng hai màu trong 3 viên bi lấy ra”.
Thanh có 4 tấm thẻ được đánh số 1, 3, 4, 7. Thanh lấy ra 3 trong 4 thẻ và xếp chúng thành một hàng ngang một cách ngẫu nhiên để tạo thành 1 số có 3 chữ số. Tính xác suất của biến cố A: “Số tạo thành chia hết cho 2 hoặc 3”.