Trở lại tình huống trong HĐ1. Xét biến cố D: “Học sinh đó được điểm giỏi môn Ngữ văn và điểm giỏi môn Toán”.
a) Hỏi D là tập con nào của không gian mẫu?
b) Tìm \(A \cap B.\)
Liệt kê dựa vào đề bài.
a) D = {Cường, Trang}.
b) \(A \cap B\) = {Cường, Trang}.
Các bài tập cùng chuyên đề
Xét phép thử “Gieo ngẫu nhiên một xúc xắc cân đối và đồng chất hai lần liên tiếp”. Gọi \(\Omega \) là không gian mẫu của phép thử đó. Xét các biến cố:
A: “Số chấm xuất hiện ở lần gieo thứ nhất là số lẻ”.
B: “Số chấm xuất hiện ở lần gieo thứ nhất là số chẵn”.
a) Viết các tập con A, B của không gian mẫu \(\Omega \) tương ứng với các biến cố A, B.
b) Tìm tập hợp \(A \cap B\).
Gieo ngẫu nhiên một xúc xắc cân đối và đồng chất hai lần liên tiếp. Xét các biến cố A: “Số chấm xuất hiện ở lần thứ nhất là số lẻ” và B: “Số chấm xuất hiện ở lần thứ hai là số lẻ”. Phát biểu biến cố \(A \cap B\) dưới dạng mệnh đề nêu sự kiện.
Đối với các tập hợp A, B trong Hoạt động 1, ta đặt \(D = A \cap B\). Phát biểu biến cố D dưới dạng mệnh đều nêu sự kiện.
Một xưởng sản xuất có hai máy chạy độc lập với nhau. Xác suất để máy I và máy II chạy tốt lần lượt là 0,8 và 0,9. Tính xác suất của biến cố C: “Cả hai máy của xưởng sản xuất đều chạy tốt”.
Xét các biến cố độ lập A và B trong Ví dụ 4.
a) Tính P(A); P(B) và P(A\( \cap \)B)
b) So sánh P(A\( \cap \)B) và P(A).P(B)
Một hộp đựng 25 tấm thẻ cùng loại được đánh số từ 1 đến 25. Rút ngẫu nhiên một tấm thẻ trong hộp. Xét các biến cố P: “Số ghi trên tấm thẻ là số chia hết cho 4”; Q: “Số ghi trên tấm thẻ là số chia hết cho 6”.
a) Mô tả không gian mẫu.
b) Nội dung của biến cố giao S = PQ là gì? Mỗi biến cố P, Q, S là tập con nào của không gian mẫu?
Một hộp đựng 20 tấm thẻ cùng loại được đánh số từ 1 đến 20. Rút ngẫu nhiên một tấm thẻ trong hộp. Gọi A là biến cố "Rút được tấm thẻ ghi số chẵn lớn hơn 9"; B là biến cố "Rút được tấm thẻ ghi số không nhỏ hơn 8 và không lớn hơn 15".
Số phần tử của AB là
A. 5.
B. 6.
C. 3.
D. 4.
Tiếp tục với phép thử ở Ví dụ 1.
a) Gọi \(D\) là biến cố “Số chấm xuất hiện trên con xúc xắc thứ nhất là 3”. Hãy xác định các biến cố \(AD,BD\) và \(C{\rm{D}}\).
b) Gọi \(\bar A\) là biến cố đối của biến cố \(A\). Hãy viết tập hợp mô tả các biến cố giao \(\bar AB\) và \(\bar AC\).
Gieo hai con xúc xắc cân đối và đồng chất. Gọi \(A\) là biến cố “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 5”, \(B\) là biến cố “Tích số chấm xuất hiện trên hai con xúc xắc bằng 6”.
a) Hãy viết tập hợp mô tả các biến cố trên.
b) Hãy liệt kê các kết quả của phép thử làm cho cả hai biến cố \(A\) và \(B\) cùng xảy ra.
Trên giá sách có các quyển vở không nhãn xếp cạnh nhau với bề ngoài, khối lượng và kích thước giống hệt nhau, trong đó có 5 quyển ghi môn Toán, 5 quyển ghi môn Ngữ Văn và 3 quyển ghi môn Tiếng Anh. Lấy ngẫu nhiên hai quyển vở. Xét các biến cố:
M: “Trong hai quyển vở được lấy, chỉ có 1 quyển ghi môn Tiếng Anh”;
N: “Trong hai quyển vở được lấy, chỉ có 1 quyển ghi môn Ngữ Văn”.
Khi đó, biến cố giao của hai biến cố M và N là:
A. “Hai quyển vở được lấy ghi cùng một môn".
B. “Hai quyển vở được lấy ghi hai môn khác nhau”.
C. “Trong hai quyển vở được lấy, một quyển ghi môn Tiếng Anh và một quyển
ghi môn Ngữ Văn”.
D. “Hai quyển vở được lấy có ít nhất một quyển ghi môn Tiếng Anh”.
Một hộp đựng 70 tấm thẻ, đánh số từ 1 đến 70 . Rút ngẫu nhiên một tấm thẻ. Kí hiệu \(a\) là số ghi trên thẻ. Gọi \(A\) là biến cố: "\(a\) là ước của 28 ", \(B\) là biến cố: "\(a\) là ước của 70 ". Xét biến cố \(C\): "\(a\) là ước của 14".
Chứng tỏ \(C\) là biến cố giao của \(A\) và \(B\).
Xét phép thử gieo ngẫu nhiên một con xúc xắc đồng chất sáu mặt. Gọi A là biến cố: “Số chấm thu được là số chẵn”, B là biến cố: “Số chấm thu được là số không chia hết cho 4”. Hãy mô tả biến cố giao AB.