Đề bài

Cho tam giác nhọn ABC (AB < AC), vẽ đường cao AH. Đường trung trực của BC cắt AC tại M, cắt BC tại N.

a) Chứng minh rằng \(\widehat {BMN} = \widehat {HAC}\)

b) Kẻ \(MI \bot AH\)(I ∈ AH), gọi K là giao điểm của AH và BM. Chứng minh rằng I là trung điểm của AK.

Phương pháp giải

a) Ta xét tam giác BMC cân tại M nên \(\widehat {MBC} = \widehat {MCB}\)

Nên \(\widehat {BMN} = \widehat {HAC} = {90^o} - \widehat {MBC} = {90^o} - \widehat {MBC}\)

b) Ta chứng minh I là trung điểm của AK do \(\Delta MAI = \Delta MKI\)(g-c-g) 

Lời giải của GV Loigiaihay.com

a)      Xét tam giác BMC cân tại M (Do M thuộc đường trung trực của BC nên MB = MC) có : \(\widehat {MBC} = \widehat {MCB}\) (góc tương ứng)

Mà \(\widehat {BMN} = {90^o} - \widehat {MBC}\) và \(\widehat {HAC} = {90^o} - \widehat {BCM}\)

\( \Rightarrow \)\(\widehat {BMN} = \widehat {HAC}\)

b)      Ta có MN⫽AH (do cùng vuông góc với BC)

\( \Rightarrow \widehat {AKM} = \widehat {KMN}\) (2 góc so le trong)

Mà \(\widehat {BMN} = \widehat {HAC}\)( chứng minh a)

\( \Rightarrow \widehat {KAM} = \widehat {AKM}\) (do cùng =\(\widehat {BMN}\))

Xét \(\Delta MIA\) và \(\Delta MIK\) có :

IM cạnh chung

\(\widehat {KAM} = \widehat {AKM}\)

\(\widehat {AIM} = \widehat {MIK} = {90^o}\)

\( \Rightarrow \Delta MIA = \Delta MIK\) (cạnh góc vuông-góc nhọn)

\( \Rightarrow \)AI = IK (cạnh tương ứng)

\( \Rightarrow \) I là trung điểm AK

Các bài tập cùng chuyên đề

Bài 1 :

Chứng minh rằng tam giác có đường trung tuyến và đường cao xuất phát từ cùng một đỉnh trùng nhau là một tam giác cân.

Xem lời giải >>
Bài 2 :

Cho tam giác ABC có đường phân giác AD, D nằm trên BC sao cho BD= 2 DC. Trên đường thẳng AC, lấy điểm E sao cho C là trung điểm của AE (H.9.53). Chứng minh rằng tam giác ABE cân tại A

Gợi ý D là trọng tâm của tam giác ABE, tam giác này có đường phân giác AD đồng thời là trung tuyến.

Xem lời giải >>
Bài 3 :

Cho tam giác ABC cân tại A (\(\widehat A < {90^o}\)). Hai đường cao BE và CF cắt nhau tại H.

a) Chứng minh rẳng \(\Delta BFC = \Delta CEB\)

b) Chứng minh rằng \(\Delta AEH = \Delta AFH\)

c) Gọi I là trung điểm BC. Chứng minh rằng ba điểm A,H,I thẳng hàng.

Xem lời giải >>
Bài 4 :

Cho tam giác ABCG là trọng tâm, H là trực tâm, I là giao điểm của ba đường phân giác, O là giao điểm của ba đường trung trực. Các điểm A, G, H, I, O phân biệt. Chứng minh rằng:

a) Nếu tam giác ABC cân tại A thì các điểm A, G, H, I, O cùng nằm trên một đường thẳng;

b) Nếu các điểm A, H, I cùng nằm trên một đường thẳng thì tam giác ABC cân tại A.

Xem lời giải >>
Bài 5 :

Gọi H là trực tâm của tam giác nhọn ABC. Khi AH = BC, hãy chứng minh \(\widehat {BAC} = {45^0}\).

Xem lời giải >>
Bài 6 :

a) Giả sử đường trung trực d của cạnh BC của tam giác ABC cắt cạnh AC tại một điểm D nằm giữa A và C. Chứng minh AC > AB.

b) Hỏi đảo lại có đúng không tức là nếu tam giác ABC có AC > AB thì đường trung trực d của cạnh BC có cắt AC tại điểm nằm giữa A và C không?

c) Vẫn giả sử đường trung trực d của cạnh BC của tam giác ABC cắt cạnh AC tại một điển D nằm giữa A và C. Với M là một điểm tuỳ ý thuộc d, M khác D, hãy chứng minh MA + MB > DA + DB.

Xem lời giải >>
Bài 7 :

Cho M là một điểm tuỳ ý bên trong tam giác đều ABC. Lấy điểm N nằm khác phía với M đối với đường thẳng AC sao cho \(\widehat {CAN} = \widehat {BAM}\) và AN = AM.

Chứng minh:

a) Tam giác AMN là tam giác đều

b) \(\Delta MAB = \Delta NAC\)

c) MN = MA, NC = MB

Xem lời giải >>
Bài 8 :

Cho tam giác ABC có đường trung tuyến AM đồng thời là đường phân giác của góc A. Chứng minh tam giác ABC là tam giác cân.

Xem lời giải >>
Bài 9 :

Cho tam giác ABC cân tại A. Gọi G là trọng tâm của tam giác và gọi I là giao điểm của các đường phân giác của tam giác. Chứng minh ba điểm A, I, G thẳng hàng.

Xem lời giải >>
Bài 10 :

Cho tam giác nhọn ABC. Hãy nêu cách tìm các điểm sau đây bên trong tam giác ABC.

a) Điểm M cách đều ba đỉnh của tam giác ABC.

b) Điểm N cách đều ba cạnh của tam giác ABC

c) Điểm P là trọng tâm của tam giác ABC.

d) Điểm Q là trực tâm của tam giác ABC.

Xem lời giải >>
Bài 11 :

Cho tam giác đều ABC có I là điểm cách đều ba cạnh AB, BC, CA. Chứng minh rằng I cách đều ba đỉnh A, B, C và cũng là trọng tâm của tam giác ABC.

Xem lời giải >>
Bài 12 :

Cho tam giác ABC vuông tại A. Trên tia đối của tia AB lấy điểm D sao cho AB = AD. Vẽ BE vuông góc với CD tại E. Gọi I là giao điểm của AC và BE; K là hình chiếu của I trên BC.

a) Chứng minh ba điểm D, I, K thẳng hàng.

b) Tìm điều kiện của tam giác ABC để I là trọng tâm của tam giác BCD.

Xem lời giải >>
Bài 13 :

Trong các hình 62a62b62c62d, hình nào có điểm cách đều các đỉnh của tam giác đó? Vì sao?

Xem lời giải >>
Bài 14 :

Cho tam giác ABC cân tại A có các đường cao BD và CE cắt nhau tại H.

a) Chứng minh ∆ADB = ∆AEC.

b) Chứng minh tam giác HDE là tam giác cân.

c) So sánh HB và HD.

d) Gọi M là trung điểm của HC, N là trung điểm của HB, I là giao điểm của BM và CN. Chứng minh ba điểm A, H, I thẳng hàng.

Xem lời giải >>
Bài 15 :

Cho \(\Delta ABC\) vuông tại A. Tia phân giác của \(\widehat {ABC}\) cắt AC tại E. Từ E kẻ \(EH \bot BC\) tại H và EH cắt AB tại K.

a) Chứng minh \(AE = EH\).

b) So sánh độ dài hai cạnh AE và EC.

c) Chứng minh BE là đường trung trực của AH.

d) Chứng minh \(\Delta KBC\) là tam giác cân.

Xem lời giải >>
Bài 16 :

Chứng minh rằng tam giác có đường trung tuyến và đường cao xuất phát từ cùng một đỉnh trùng nhau là một tam giác cân.

Xem lời giải >>
Bài 17 :

Cho tam giác ABC cân tại A, đường cao AH \(\left( {H \in BC} \right)\).

a) Chứng minh \(\Delta AHB = \Delta AHC\).

b) Từ H kẻ đường thẳng song song với AC, cắt AB tại D. Chứng minh \(AD = DH\).

c) Gọi M là trung điểm của AC, CD cắt AH tại G. Chứng minh ba điểm B, G, M thẳng hàng.

d) Chứng minh chu vi \(\Delta ABC\) lớn hơn \(AH + 3BG\).

Xem lời giải >>
Bài 18 :

Cho tam giác ABC có đường phân giác AD, D nằm trên BC sao cho \(BD = 2DC\). Trên đường thẳng AC, lấy điểm E sao cho C là trung điểm của AE (H.9.47). Chứng minh rằng tam giác ABE cân tại A.

 

Gợi ý. D là trọng tâm của tam giác ABE, tam giác này có đường phân giác AD đồng thời là đường trung tuyến.

Xem lời giải >>
Bài 19 :

Cho tam giác ABC cân tại A. Trên tia đối của tia BC và tia đối của tia CB theo thứ tự lấy hai điểm D và E sao cho \(BD = CE\).

a) Chứng minh \(\Delta ADE\) cân.

b) Gọi M là trung điểm của BC. Chứng minh AM là tia phân giác của góc DAE và \(AM \bot DE\).

c) Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD, AE. Chứng minh: \(BH = CK\).

d) Chứng minh: HK//BC.

Xem lời giải >>