Đề bài

Cho tam giác ABC. Kẻ tia phân giác At của góc tạo bởi tia AB và tia đối của AC. Chứng minh rằng nếu đường thẳng chứa tia At song song với đường thẳng BC thì tam giác ABC cân tại A.

Phương pháp giải

\(At\parallel BC\)

\(\widehat {ABC} = \widehat {BAt}\)(Hai góc so le trong)

\(\widehat {ACB} = \widehat {MAt}\)(Hai góc đồng vị)

Lời giải của GV Loigiaihay.com

Gọi AM là tia đối của AC. At là đường phân giác của \(\widehat {MAB} \Rightarrow \widehat {MAt} = \widehat {BAt}\)

Ta có: \(At\parallel BC\) nên:

\(\widehat {ABC} = \widehat {BAt}\)(Hai góc so le trong)

\(\widehat {ACB} = \widehat {MAt}\)(Hai góc đồng vị)

Mà \(\widehat {MAt} = \widehat {BAt}\)\( \Rightarrow \widehat {ABC} = \widehat {ACB}\)

Vậy tam giác ABC cân tại A ( Dấu hiệu nhận biết tam giác cân).

Các bài tập cùng chuyên đề

Bài 1 :

Mỗi tam giác có mấy đường phân giác?

Xem lời giải >>
Bài 2 :

Cắt một tam giác bằng giấy. Hãy gấp tam giác vừa cắt để được ba đường phân giác của nó. Mở tờ giấy ra, hãy quan sát và cho biết ba nếp gấp đó có cùng đi qua một điểm không (H.9.33)

Xem lời giải >>
Bài 3 :

Vẽ và cắt hình tam giác ABC rồi gấp hình sao cho cạnh AB trùng với cạnh AC ta được nếp gấp AD (Hình 1). Đoạn thẳng AD nằm trên tia phân giác của góc nào của tam giác ABC ?

Xem lời giải >>
Bài 4 :

Trong Hình 3, hãy vẽ các đường phân giác GM, EN và FP của tam giác EFG.

Xem lời giải >>
Bài 5 :

Cho tam giác ABC vuông tại A. Tia phân giác của góc C cắt AB ở M. Từ B kẻ BH vuông góc với đường thẳng CM (H ∈ CM). Trên tia đối của tia HC lấy điểm E sao cho HE = HM.

a) Chứng minh rằng tam giác MBE cân.

b) Chứng minh rằng \(\widehat {EBH} = \widehat {ACM}\)

c) Chứng minh rằng \(EB \bot BC\)

Xem lời giải >>
Bài 6 :

Trong tam giác ABC, tia phân giác của góc A cắt cạnh BC tại điểm D (Hình 110). Các đầu mút của đoạn thẳng AD có đặc điểm gì?

Xem lời giải >>
Bài 7 :

Cho tam giác ABC cân tại A. Vẽ đường phân giác AD. Chứng minh AD cũng là đường trung tuyến của tam giác đó.

Xem lời giải >>
Bài 8 :

Tam giác ABC có ba đường phân giác cắt nhau tại I. Chứng minh:

a) \(\widehat {IAB} + \widehat {IBC} + \widehat {ICA} = 90^\circ \);                                       

b) \(\widehat {BIC} = 90^\circ  + \dfrac{1}{2}\widehat {BAC}\).

Xem lời giải >>
Bài 9 :

Tam giác ABC có ba đường phân giác cắt nhau tại IAB < AC.

a) Chứng minh \(\widehat {CBI} > \widehat {ACI}\);                                            

b) So sánh IBIC.

Xem lời giải >>