Đề bài

Gọi BE và CF là hai đường phân giác của tam giác ABC cân tại A. Chứng minh BE = CF.

Phương pháp giải

Sử dụng tính chất của tam giác cân, xét 2 tam giác bằng nhau rồi chỉ ra 2 cạnh tương ứng bằng nhau.

Lời giải của GV Loigiaihay.com

Vì tam giác ABC cân tại A nên AB = AC; \(\widehat {ABC} = \widehat {ACB}\) ( tính chất)

Vì BE là là tia phân giác của góc ABC nên \(\widehat {{B_1}} = \widehat {{B_2}} = \dfrac{1}{2}.\widehat {ABC}\)

Vì CF là tia phân giác của góc ACB nên \(\widehat {{C_1}} = \widehat {{C_2}} = \dfrac{1}{2}.\widehat {ACB}\)

Do đó, \(\widehat {{B_1}} = \widehat {{C_1}}\)

Xét \(\Delta ABE\) và \(\Delta ACF\), ta có:

\(\widehat A\) chung

AB = AC

\(\widehat {{B_1}} = \widehat {{C_1}}\)

\( \Rightarrow \Delta ABE = \Delta ACF\left( {g.c.g} \right)\)

\( \Rightarrow \)BE = CF ( 2 cạnh tương ứng)

Các bài tập cùng chuyên đề

Bài 1 :

Điểm cách đều ba cạnh của tam giác là:

Xem lời giải >>
Bài 2 :

Cho tam giác ABC có hai đường phân giác AM, BN cắt nhau tại điểm I. Hỏi CI có là đường phân giác của góc C không?

Xem lời giải >>
Bài 3 :

Chứng minh rằng trong tam giác đều, điểm cách đều 3 cạnh của tam giác là trọng tâm của tam giác đó.

Xem lời giải >>
Bài 4 :

Kí hiệu I là điểm đồng quy của ba đường phân giác trong tam giác ABC. Tính góc BIC khi biết góc BAC bằng 120\(^\circ \).

Xem lời giải >>
Bài 5 :

Trong tam giác ABC, hai đường phân giác của các góc B và C cắt nhau tại D. Kẻ DP vuông góc với BC, DQ vuông góc với CA, DR vuông góc với AB.

a) Hãy giải thích tại sao DP = DR.

b) Hãy giải thích tại sao DP = DQ.

c) Từ câu a và b suy ra DR = DQ. Tại sao D nằm trên tia phân giác của góc A? ( Đây là một cách chứng minh định lí 2)

Xem lời giải >>
Bài 6 :

Vẽ một tam giác trên giấy. Cắt rời tam giác ra khỏi tờ giấy rồi gấp hình tam giác đó để xác định ba đường phân giác của tam giác (Hình 4). Em hãy quan sát và nhận xét xem ba đường phân giác có cùng đi qua một điểm không.

Xem lời giải >>
Bài 7 :

Một nông trại nằm trên mảnh đất hình tam giác có ba cạnh tường rào tiếp giáp với ba con đường (Hình 7). Hỏi phải đặt trạm qua sát ở đâu để nó cách đều ba cạnh tường rào?

Xem lời giải >>
Bài 8 :

Trong Hình 8, I là giao điểm của ba đường phân giác của tam giác ABC.

a) Cho biết IM = 6 (Hình 8a). Tính IK và IN.

b) Cho biết IN = x + 3, IM = 2x – 3 (Hình 8b). Tìm x

Xem lời giải >>
Bài 9 :

Cho tam giác ABC cân tại A. Kẻ đường trung tuyến AM. Tia phân giác của góc B cắt AM tại I. Chứng minh rằng CI là tia phân giác của góc C.

Xem lời giải >>
Bài 10 :

Cho tam giác ABC cân tại A. Tia phân giác của các góc B và C cắt nhau tại M. Tia AM cắt BC tại H. Chứng minh rằng H là trung điểm của BC

Xem lời giải >>
Bài 11 :

Cho tam giác DEF. Tia phân giác của góc D và E cắt nhau tại I. Qua I kẻ đường thẳng song song với EF, đường thằng này cắt DE tại M, cắt DF tại N. Chứng minh rằng ME + NF = MN.

Xem lời giải >>
Bài 12 :

Cho tam giác AMN vuông tại A. Tia phân giác của góc M và N cắt nhau tại I. Tia MI cắt AN tại R. Kẻ RT vuông góc với AI tại T. Chứng minh rằng AT = RT.

Xem lời giải >>
Bài 13 :

Ba thành phố A, B, C được nối với nhau bởi xa lộ (Hình 9). Người ta muốn tìm một địa điểm để làm một sân bay sao cho địa điểm này phải cách đều ba xa lộ đó. Hãy xác định vị trí của sân bay thỏa mãn điều kiện trên và giải thích cách thực hiện.

Xem lời giải >>
Bài 14 :

Cho tam giác ABC vuông tại A có AB = \(\dfrac{1}{2}\)AC, AD là tia phân giác \(\widehat {BAC}\)(D ∈ BC). Gọi E là trung điểm của AC.

a) Chứng minh rằng DE = DB

b) AB cắt DE tại K. Chứng minh rằng tam giác DCK cân và B là trung điểm của đoạn thẳng AK.

c) AD cắt CK tại H. Chứng minh rằng AH\( \bot \)KC. 

Xem lời giải >>
Bài 15 :

Bạn Ngân gấp một miếng bìa hình tam giác để các nếp gấp tạo thành ba tia phân giác của các góc ở đỉnh của tam giác đó (Hình 109).

 

Ba nếp gấp đó có đặc điểm gì?

Xem lời giải >>
Bài 16 :

Quan sát các đường phân giác AD, BE, CK của tam giác ABC (Hình 114), cho biết ba đường phân giác đó có cùng đi qua một điểm hay không.

Xem lời giải >>
Bài 17 :

Tìm số đo x trong Hình 115.

Xem lời giải >>
Bài 18 :

Cho tam giác ABCI là giao điểm của ba đường phân giác. M, N, P lần lượt là hình chiếu của I trên các cạnh BC, CA, AB. Chứng minh rằng: IA, IB, IC lần lượt là đường trung trực của các đoạn thẳng NP, PM, MN.

Xem lời giải >>
Bài 19 :

Tam giác ABC có ba đường phân giác cắt nhau tại I. Gọi M, N, P lần lượt là hình chiếu của I trên các cạnh BC, CA, AB.

a) Các tam giác IMN, INP, IPM có là tam giác cân không? Vì sao?

b) Các tam giác ANP, BPM, CMN có là tam giác cân không? Vì sao?

Xem lời giải >>
Bài 20 :

Cho tam giác ABC cân tại A có \(\widehat {ABC} = 70^\circ \). Hai đường cao BD CE cắt nhau tại H.

a) Tính số đo các góc còn lại của tam giác ABC.

b) Chứng minh BD = CE.

c) Chứng minh tia AH là tia phân giác của góc BAC.

Xem lời giải >>
Bài 21 :

Cho tam giác ABCO là giao điểm của ba đường trung trực. Qua các điểm A, B, C lần lượt kẻ các đường thẳng vuông góc với OA, OB, OC, hai trong ba đường đó lần lượt cắt nhau tại M, N, P (Hình 144). Chứng minh:

a) \(\Delta OMA = \Delta OMB\) và tia MO là tia phân giác của góc NMP;

b) O là giao điểm của ba đường phân giác của tam giác MNP.

Xem lời giải >>
Bài 22 :

Cho tam giác ABCBC > AC, I là giao điểm của hai đường phân giác góc A và góc B. Khi đó

A.\(\widehat {ICA} = \widehat {ICB}\).

B.\(\widehat {IAC} = \widehat {IBC}\).

C.\(\widehat {ICA} > \widehat {ICB}\).

D.\(\widehat {ICA} < \widehat {IBC}\).

Xem lời giải >>