a) Quan sát Hình 11, chứng minh \(AK\) là đường phân giác của góc \(A\) trong tam giác \(ABC\).
b) Dựa vào kết quả của câu a, hãy nêu cách vẽ đường phân giác của một góc trong tam giác bằng thước kẻ và eke.
Định lí đường phân giác
Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn thẳng ấy.
Định lí Thales
Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh đó các đoạn thẳng tương ứng tỉ lệ.
a) Vì \(\left\{ \begin{array}{l}AK \bot HA\\BD \bot HA\end{array} \right. \Rightarrow AK//BD\) (từ vuông góc đến song song)
Xét tam giác \(BCD\) có \(AK//BD\), theo định lí Thales ta có:
\(\frac{{KC}}{{KB}} = \frac{{AC}}{{AD}}\).
Mà \(AD = AB\) (gt), nên \(\frac{{KC}}{{KB}} = \frac{{AC}}{{AB}}\).
Xét tam giác \(ABC\) ta có:
\(\frac{{KC}}{{KB}} = \frac{{AC}}{{AB}} \Rightarrow AK\) là đường phân giác của góc \(A\) trong tam giác \(ABC\).
b) Vẽ đường phân giác của một góc trong tam giác bằng thước kẻ và eke.
Giả sử ta vẽ đường phân giác góc \(A\) của tam giác \(ABC\).
Bước 1: Trên tia đối của tia \(AC\) lầy điểm \(D\) sao cho \(AD = AC\);
Bước 2: Vẽ \(AH\) vuông góc với \(BD\);
Bước 3: Vẽ \(AK\) vuông góc với \(AH\) tại \(A\).
Bước 4: Khi đó, \(AK\) là đường phân giác góc \(A\) trong tam giác \(ABC\).
Các bài tập cùng chuyên đề
Cho tia phân giác At của góc xAy (H.4.20). Nếu lấy điểm B trên tia Ax, điểm C trên tia Ay, ta được tam giác ABC. Giả sử tia phân giác At cắt BC tại điểm D.
Khi lấy B và C sao cho AB = AC (H.4.20a), hãy so sánh tỉ số \(\dfrac{{DB}}{{DC}}\) và \(\dfrac{{AB}}{{AC}}\)
Cho tia phân giác At của góc xAy (H.4.20). Nếu lấy điểm B trên tia Ax, điểm C trên tia Ay, ta được tam giác ABC. Giả sử tia phân giác At cắt BC tại điểm D
Khi lấy B và C sao cho AB = 2 cm và AC = 4 cm (H.4.20b), hãy dùng thước có vạch chia đến milimét để đo độ dài các đoạn thẳng DB, DC rồi so sánh hai tỉ số \(\dfrac{{DB}}{{DC}}\) và \(\dfrac{{AB}}{{AC}}\)
Tính độ dài x trên Hình 4.23
Trong H.4.19, AD là đường phân giác của tam giác ABC. Hai tỉ số \(\dfrac{{DB}}{{DC}}\) và \(\dfrac{{AB}}{{AC}}\) có bằng nhau không?
Tính độ dài x trên Hình 4.24.
Cho tam giác ABC. Đường phân giác trong của góc A cắt BC tại D. Tính độ dài đoạn thẳng DC biết AB = 4,5 m; AC = 7,0 m và CB = 3,5 m (làm tròn kết quả đến hàng phần chục).
Cho tam giác ABC cân tại A có AB = 15 cm, BC = 10 cm, đường phân giác trong của góc B cắt AC tại D. Khi đó, đoạn thẳng AD có độ dài là
A. 3 cm.
B. 6 cm.
C. 9 cm.
D. 12 cm.
Tính độ dài x trong Hình 5.12
Cho tam giác ABC, trung tuyến AI. Tia phân giác của góc AIB và tia phân giác góc AIC cắt AB, AC lần lượt tại M và N. Chứng minh MN//BC.
Cho \(\Delta ABC\) có AD, BE, CF lần lượt là đường phân giác của góc A, góc B, góc C \(\left( {D \in BC,E \in AC,F \in AB} \right)\). Chứng minh rằng \(\frac{{AE}}{{EC}}.\frac{{CD}}{{DB}}.\frac{{BF}}{{FA}} = 1\).
Cho tam giác ABC, phân giác AD \(\left( {D \in BC} \right)\). Kẻ DE//AB\(\left( {E \in AC} \right)\). Chứng minh rằng \(AB.EC = AC.EA\)
Cho \(\Delta ABC\). Tia phân giác góc trong của góc A cắt BC tại D. Cho \(AB = 6,AC = x,BD = 9,BC = 21\). Độ dài x bằng
A. 4
B. 6
C. 12
D. 14
Cho tam giác ABC có AD là tia phân giác của góc BAC. Biết \(AB = 3cm,BD = 4cm,CD = 6cm\). Độ dài AC bằng
A. 4cm
B. 5cm
C. 6cm
D. 4,5cm
Cho hình thoi ABCD có M là trung điểm của AD, đường chéo AC cắt BM tại điểm E (H.5.16)
Tỉ số \(\frac{{EM}}{{EB}}\) bằng
A. \(\frac{1}{3}\)
B. 2
C. \(\frac{1}{2}\)
D. \(\frac{2}{3}\)
Cho tam giác ABC cân tại A, các đường phân giác BD, CE \(\left( {D \in AC,E \in AB} \right)\). Chứng minh DE//BC
Quan sát Hình 4.17 và chọn khẳng định đúng.
A. \(\frac{{IA}}{{IC}} = \frac{{BA}}{{AC}}.\)
B. \(\frac{{IA}}{{IC}} = \frac{{BC}}{{BA}}.\)
C. \(\frac{{IA}}{{IC}} = \frac{{BA}}{{BC}}.\)
D. \(\frac{{IA}}{{IC}} = \frac{{AC}}{{AB}}.\)
Quan sát Hình 4.18, biết BI là phân giác của góc B, AB = 12 cm, BC = 15 cm, AC = 9 cm. Độ dài đoạn IA là:
A. 5 cm.
B. 4 cm.
C. 6 cm.
D. 3 cm.
Quan sát Hình 4.19. Tỉ số \(\frac{x}{y}\) bằng
A. \(\frac{1}{7}\).
B. \(\frac{{15}}{7}\)
C. \(\frac{7}{{15}}\)
D. \(\frac{2}{{15}}\)
Quan sát Hình 4.20. Độ dài x, y lần lượt là:
A. x = 16 cm; y = 12 cm.
B. x = 14 cm; y = 14 cm.
C. x = 14,3 cm; y = 10,7 cm.
D. x = 12 cm; y = 16 cm.
Tìm độ dài x trong Hình 4.21.
Cho tam giác ABC. Đường phân giác của góc A cắt BC tại D. Tính độ dài đoạn thẳng DC biết AB = 4,5 m; AC = 7,0 m và CB = 3,5 m (làm tròn kết quả đến hàng phần chục).
Cho tam giác ABC, phân giác AD (D ∈ BC). Đường thẳng qua D song song với AB cắt AC tại E. Chứng minh rằng \(\frac{{AC}}{{AB}} = \frac{{EC}}{{EA}}.\)
Tam giác ABC có AB = 15 cm, AC = 20 cm, BC = 25 cm. Đường phân giác của góc BAC cắt cạnh BC tại D.
a) Tính độ dài các đoạn thẳng DB và DC.
b) Tính tỉ số diện tích của hai tam giác ABD và ACD.
Tính độ dài cạnh \(MQ\) của tam giác \(MPQ\) trong Hình 6.
Tính độ dài \(x\) trong Hình 7.
Tam giác \(ABC\) có \(AB = 6cm,AC = 8cm,BC = 10cm\). Đường phân giác của góc \(BAC\) cắt cạnh \(BC\) tại \(D\).
a) Tính độ dài các đoạn thẳng \(DB\) và \(DC\).
b) Tính tỉ số diện tích giữa \(\Delta ADB\) và \(\Delta ADC\).
Cho tam giác \(MNP\) có \(MD\) là tia phân giác góc \(M\left( {D \in NP} \right)\). Trong các khẳng định sau, khẳng định nào đúng?
A. \(\frac{{DN}}{{MN}} = \frac{{DP}}{{MP}}\).
B. \(\frac{{MN}}{{DN}} = \frac{{DP}}{{MP}}\).
C. \(\frac{{DN}}{{MN}} = \frac{{MP}}{{DP}}\).
D. \(\frac{{MN}}{{MP}} = \frac{{DP}}{{DN}}\).
Cho \(\Delta ABC\) biết \(AM\) là đường phân giác. Trong các khẳng định sau, khẳng định nào đúng?
A. \(\frac{{BM}}{{MC}} = \frac{{AB}}{{AC}}\).
B. \(\frac{{AB}}{{MC}} = \frac{{BM}}{{AC}}\).
C. \(\frac{{AM}}{{MC}} = \frac{{AB}}{{AC}}\).
D. \(\frac{{BM}}{{MC}} = \frac{{AM}}{{AC}}\).
Tính độ dài \(x\) trong Hình 9
Trong Hình 38, tam giác ABC có AD là đường phân giác của góc BAC. Giả sử mỗi ô vuông của lưới ô vuông có độ dài cạnh bằng 1 cm.
a) Tính độ dài các đoạn thẳng DB, DC.
b) Tính độ dài các đoạn thẳng AB, AC.
c) So sánh các tỉ số \(\frac{{DB}}{{DC}},\,\,\frac{{AB}}{{AC}}\).