Giải phương trình: \(\left( {x + 5} \right)\left( {x - 5} \right) - {\left( {x - 3} \right)^2} = 6\).
Để giải phương trình ta có thể sử dụng các quy tắc sau:
- Chuyển một số hạng từ vế bên này sang vế bên kia và đổi dấu số hạng (Quy tắc chuyển vế);
- Nhân cả hai vế với cùng một số khác 0 (Quy tắc nhân với một số);
- Chia hai vế cho cùng một số khác 0 (Quy tắc chia cho một số).
- Khi bỏ dấu ngoặc mà đằng trước dấu ngoặc có dấu cộng, ta bỏ ngoặc và giữ nguyên dấu của các số hạng trong ngoặc. Khi bỏ dấu ngoặc mà đằng trước dấu ngoặc có dấu trừ, ta bỏ ngoặc và đổi dấu các số hạng trong ngoặc (Quy tắc dấu ngoặc).
\(\left( {x + 5} \right)\left( {x - 5} \right) - {\left( {x - 3} \right)^2} = 6\)
\(\left( {{x^2} - 25} \right) - \left( {{x^2} - 6x + 9} \right) = 6\)
\({x^2} - 25 - {x^2} + 6x - 9 = 6\)
\(\left( {{x^2} - {x^2}} \right) + 6x = 6 + 25 + 9\)
\(6x = 40\)
\(x = 40:6\)
\(x = \frac{{20}}{3}\)
Vậy phương trình có nghiệm là \(x = \frac{{20}}{3}\).
Các bài tập cùng chuyên đề
Giải các phương trình sau:
a) 5x−(2−4x)=6+3(x−1)
b) \(\frac{{x - 1}}{4}\)+2x=3 - \(\frac{{2{\rm{x}} - 3}}{3}\)
Hai bạn Lan và Hương cùng vào hiệu sách. Lan mua 5 quyển vở cùng loại và 1 quyển sách giá 50 nghìn đồng. Hương mua 3 quyển vở cùng loại với loại vở của Lan và 1 quyển sách giá 74 nghìn đồng. Số tiền phải trả của Lan và Hương là bằng nhau
a) Gọi x (nghìn đồng) là giá tiền của mỗi quyển vở. Viết phương trình biểu thị tổng số tiền mua sách và vở của hai bạn Lan và Hương là bằng nhau
b) Giải phương trình nhận được ở câu a để tìm giá tiền của mỗi quyển vở
Giải các phương trình sau:
a) 7x−(2x+3)=5(x−2)
b) x + \(\frac{{2{\rm{x}} - 1}}{5}\)=3 + \(\frac{{3 - x}}{4}\)
Hiện nay tuổi của bố bạn Nam gấp 3 lần tuổi của Nam. Sau 10 năm nữa thì tổng số tuổi của Nam và bố là 76 tuổi. Gọi x là số tuổi hiện nay của Nam
a) Biểu thị tuổi hiện nay của bố bạn Nam theo tuổi hiện tại của Nam
b) Viết phương trình biểu thị sự kiện sau 10 năm nữa thì tổng số tuổi của nam và bố là 76 tuổi
c) Giải phương trình nhận được ở câu b để tính tuổi của Nam và bố hiện nay
Bạn Mai mua cả sách và vở hết 500 nghìn đồng. Biết rằng số tiền mua sách nhiều gấp rưỡi số tiền mua vở, hãy tính số tiền bạn Mai dùng để mua mỗi loại
Giải các phương trình sau:
a) x−3(2−x)=2x−4
b) \(\frac{1}{2}\left( {x + 5} \right) - 4 = \frac{1}{3}\left( {x - 1} \right)\)
c) 3(x−2)−(x+1)=2x−4
d) 3x−4=2(x−1)−(2−x)
Bạn Nam giải phương trình x(x+1)=x(x+2) như sau:
x+1=x+2
x−x=2−1
0x=1 (vô nghiệm)
Em có đồng ý cách giải của bạn Nam không? Nếu không đồng ý, hãy trình bày cách giải của em.
Tập nghiệm S của phương trình 3(x+1)−(x−2)=7−2x là
A. S=0 B. S={\(\frac{1}{2}\)}
C.S=∅ D. S=R
Giải các phương trình sau:
a) 5(x−1)−(6−2x)=8x−3
b) \(\frac{{2{\rm{x}} - 1}}{3} - \frac{{5 - 3{\rm{x}}}}{2} = \frac{{x + 7}}{4}\)
Giải các phương trình sau:
a) \(15 - 4x = x - 5\);
b) \(\dfrac{{5x + 2}}{4} + \dfrac{{3x - 2}}{3} = \dfrac{3}{2}\).
Giải các phương trình sau:
a) \(5x - 30 = 0\);
b) \(4 - 3x = 11\);
c) \(3x + x + 20 = 0\);
d) \(\dfrac{1}{3}x + \dfrac{1}{2} = x + 2\).
Giải các phương trình sau:
a) \(8 - \left( {x - 15} \right) = 2.\left( {3 - 2x} \right)\);
b) \( - 6\left( {1,5 - 2u} \right) = 3\left( { - 15 + 2u} \right)\);
c) \({\left( {x + 3} \right)^2} - x\left( {x + 4} \right) = 13\);
d) \(\left( {y + 5} \right)\left( {y - 5} \right) - {\left( {y - 2} \right)^2} = -5\).
Giải phương trình: \(\dfrac{{9x + 5}}{6} = 1 - \dfrac{{6 + 3x}}{8}\);
Giải phương trình: \(\dfrac{{2\left( {x + 1} \right)}}{3} - \dfrac{1}{2} = \dfrac{{1 + 3x}}{4}\);
Giải phương trình: \( \frac {x+3}{5} - \frac{2}{3}x = \frac{3}{10}\)
Giải phương trình: \(\dfrac{{5x - 3}}{4} = \dfrac{{x + 2}}{3}\);
Tìm \(x\), biết rằng nếu lấy \(x\) trừ đi \(\dfrac{1}{2}\), rồi nhân kết quả với \(\dfrac{1}{2}\) thì được \(\dfrac{1}{8}\).
Phương trình nào sau đây nhận \(x = 2\) là nghiệm?
A. \(3x + 6 = 0\).
B. \(2x - 4 = 0\).
C. \(2x + 3 = 1 + x\).
D. \(x + 2 = 4 + x\).
Nghiệm của phương trình \(5x + 3 = 18\) là
A. \(x = - 3\).
B. \(x = 5\).
C. \(x = 3\).
D. \(x = - 5\).
Phương trình \(x - 4 = 10 - x\) có nghiệm là
A. \(3\).
B. \(14\).
C. \(7\).
D. \( - 7\).
Giải phương trình: \(\dfrac{1}{2}x + \dfrac{2}{3} = x + 1\).
Giải phương trình: \(10 - \left( {x - 5} \right) = 20\);
Giải phương trình: \( - 12 + 3\left( {1,5 - 3u} \right) = 15\);
Giải phương trình: \({\left( {x + 2} \right)^2} - x\left( {x - 3} \right) = - 12\);
Giải phương trình: \(\frac{{3x - 1}}{6} = \frac{{3 + 2x}}{3}\);
Giải phương trình: \(\frac{{x + 5}}{3} = 1 - \frac{{x - 2}}{4}\);
Giải phương trình: \(\frac{{3x - 2}}{5} + \frac{3}{2} = \frac{{4 - x}}{{10}}\);
Giải phương trình: \(\frac{x}{3} + \frac{{2x + 1}}{6} = \frac{{4\left( {x - 2} \right)}}{5}\)
Giải phương trình:
\(2\left( {x - 0,7} \right) - 1,6 = 1,5 - \left( {x + 1,2} \right)\).
Tìm chỗ sai trong mỗi lời giải sau và giải lại cho đúng:
a)
\(\begin{array}{l}5 - \left( {x + 8} \right) = 3x + 3\left( {x - 9} \right)\\\,\,\,\,5 - x + 8 = 3x + 3x - 27\\\,\,\,\,\,\,\,\,\,13 - x = 6x - 27\\\,\,\,\,\, - x - 6x = - 27 + 13\\\,\,\,\,\,\,\,\,\,\,\,\,\, - 7x = - 14\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = \left( { - 14} \right):\left( { - 7} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 2.\end{array}\)
Vậy phương trình có nghiệm \(x = 2\).
b)
\(\begin{array}{l}3x - 18 + x = 12 - \left( {5x + 3} \right)\\\,\,\,\,\,\,\,4x - 18 = 12 - 5x - 3\\\,\,\,\,\,\,\,4x + 5x = 9 - 18\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,9x = - 9\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = \left( { - 9} \right):9\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = - 1.\end{array}\)
Vậy phương trình có nghiệm \(x = - 1\).