Đề bài

\(y = x\); \(y = x + 2\); \(y =  - x\); \(y =  - x + 2\).

Bốn đồ thị nói trên cắt nhau tại các điểm \(O\left( {0;0} \right),A,B,C\). Tứ giác có bốn đỉnh \(O;A;B;C\) là hình gì? Giải thích.

Phương pháp giải

Tính độ dài các cạnh và góc của tứ giác.

Chú ý: Hình thoi có 1 góc vuông là hình vuông.

Lời giải của GV Loigiaihay.com

Vì đường thẳng \(y = x\);\(y = x + 2\) song song với nhau và \(y =  - x\);\(y =  - x + 2\) song song với nhau nên tứ giác \(OABC\) là hình bình hành.

Lại có \(OC;OA\) là đường chéo của hình vuông có độ dài cạnh là 1 nên \(OC = OA\). Do đó, tứ giác \(OABC\) là hình thoi.

Lại có \(OC;OA\) là đường chéo của hình vuông nên cũng là đường phân giác. Do đó, \(\widehat {COB} = \widehat {AOB} = 45^\circ  \Rightarrow \widehat {COA} = \widehat {COB} + \widehat {AOB} = 45^\circ  + 45^\circ  = 90^\circ \)

Hình thoi \(OABC\) có góc \(\widehat {COA} = 90^\circ \) nên tứ giác \(OABC\) là hình vuông.

Các bài tập cùng chuyên đề

Bài 1 :

Xét hàm số: y = x – 2

a) Tìm giá trị của y tương ứng với giá trị của x trong bảng sau:

x

0

2

3

y

?

?

?

b) Vẽ các điểm A (0; -2); B(2; 0); C(3; 1) của đồ thị hàm số y = x – 2 trong mặt phẳng tọa độ Oxy. Dùng thước thẳng để kiểm tra ba điểm A, B, C có thẳng hàng hay không?

Xem lời giải >>
Bài 2 :

Cho hàm số y = 4x + 3. Tìm điểm thuộc đồ thị hàm số của hàm số có hoành độ bằng 0.

Xem lời giải >>
Bài 3 :

Cho đường thẳng \(d:y = \left( {m - 2} \right)x + 2\) với \(m \ne 2\).

a)     Tìm giá trị của \(m\) để đường thẳng \(d\) cùng với các trục \(Ox,Oy\) tạo thành tam giác có diện tích bằng 2.

b)    Chứng tỏ rằng khi giá trị của \(m\) thay đổi thì tập hợp các đường thẳng \(d\) luôn đi qua một điểm cố định.

Xem lời giải >>
Bài 4 :

Trong mặt phẳng tọa độ \(Oxy\), cho đồ thị của hàm số \(y = 2x + 4\) (Hình 11).

a)     Gọi \(A,B\) lần lượt là giao điểm của trục \(Ox,Oy\) với đồ thị hàm số \(y = 2x + 4\). Xác định tọa độ các điểm \(A,B\).

b)    Gọi \(M,N\) lần lượt là trung điểm của \(OA,OB\). Xác định tọa độ các điểm \(M,N\).

c)     Tính tỉ số phần trăm của diện tích tam giác \(OMN\) và diện tích tam giác \(OAB\).

 

Xem lời giải >>
Bài 5 :

Gọi A, B, C, D, E là các điểm trên đồ thị hàm số y=2x−1 có hoành độ x lần lượt là -2; -1; 0; 1; 2. Từ kết quả của HĐ4, hãy xác định tọa độ các điểm A, B, C, D, E

Xem lời giải >>
Bài 6 :

Trên mặt phẳng tọa độ Oxy, biểu diễn các điểm A, B, C, D, E trong HĐ5. Dùng thước thẳng để kiểm nghiệm rằng các điểm này cùng nằm trên một đường thẳng

Xem lời giải >>
Bài 7 :

Trong các điểm sau, điểm nào thuộc đồ thị của hàm số \(y = 2 - 4x\)?

A. \(\left( {1;1} \right)\).

B. \(\left( {2;0} \right)\).

C. \(\left( {1; - 1} \right)\).

D. \(\left( {1; - 2} \right)\).

Xem lời giải >>
Bài 8 :

Trong các điểm sau, điểm nào thuộc đồ thị của hàm số \(y =  - 5x + 5\)?

A. \(\left( {1;1} \right)\).

B. \(\left( {2;0} \right)\).

C. \(\left( {0;4} \right)\).

D. \(\left( {2; - 5} \right)\).

Xem lời giải >>
Bài 9 :

Cho hai hàm số \(y = x + 3\), \(y =  - x + 3\) có đồ thị lần lượt là các đường thẳng \({d_1}\) và \({d_2}\). Tính chu vi và diện tích của tam giác \(ABC\).

Xem lời giải >>
Bài 10 :

Cho hàm số \(y = 3x\).

a)     Tìm các giá trị tương ứng của hàm số trong Bảng 5.15.

b)    Vẽ một hệ trục tọa độ \(Oxy\) và đánh dấu các điểm biểu diễn các cặp giá trị \(\left( {x;y} \right)\) tương ứng trong Bảng 5.15.

c)     Vẽ đường thẳng đi qua hai trong bốn điểm trên. Dùng thước thẳng kiểm tra xem đường thẳng này có đi qua hai điểm còn lại hay không.

d)    Lấy thêm một cặp số \(\left( {x;y} \right)\), với x chọn tùy ý khác bốn giá trị ở trên. Đánh dấu điểm biểu diễn cặp số đó lên mặt phẳng tọa độ \(Oxy\). Dùng thước thẳng kiểm tra xem điểm vừa đánh dấu có thuộc đường thẳng đã vẽ ở câu c không.

 

Xem lời giải >>