a) Xác định hàm số \(y = a{x^2} + bx + c\) biết đồ thị của nó có đỉnh \(I\left( {\frac{3}{2};\frac{1}{4}} \right)\) và cắt trục hoành tại điểm có hoành độ bằng \(2.\)
b) Xét sự biến thiên và vẽ đồ thị hàm số tìm được.
a) Ta có: Parabol cắt trục hoành tại điểm có hoành độ bằng \(2\) nên \(y(2) = 0 \Leftrightarrow 4a + 2b + c = 0\)
Đồ thị của nó có đỉnh \(I\left( {\frac{3}{2};\frac{1}{4}} \right)\) nên \(\left\{ \begin{array}{l}\frac{{ - b}}{{2a}} = \frac{3}{2}\\{\left( {\frac{3}{2}} \right)^2}a + \frac{3}{2}b + c = \frac{1}{4}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3a + b = 0\\9a + 6b + 4c = 1\end{array} \right.\)
Kết hợp, ta được hệ \(\left\{ \begin{array}{l}3a + b = 0\\9a + 6b + 4c = 1\\4a + 2b + c = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 1\\b = 3\\c = - 2\end{array} \right.\)
Vậy parabol đó là \(y = - {x^2} + 3x - 2\)
b) Hàm số \(y = - {x^2} + 3x - 2\) có \(a = - 1 < 0\) và đỉnh là \(I\left( {\frac{3}{2};\frac{1}{4}} \right)\)
Ta có bảng biến thiên:
Hàm số đồng biến trên \(( - \infty ;\frac{3}{2})\) và nghịch biến trên \((\frac{3}{2}; + \infty )\)
* Vẽ đồ thị hàm số
Đỉnh \(I\left( {\frac{3}{2};\frac{1}{4}} \right)\)
Trục đối xứng \(x = \frac{3}{2}\)
Cắt trục tung tại A(0;-2) và cắt Ox tại B(1;0) và C(2;0)
Lấy D(3;-2) thuộc (P), đối xứng với A(0;-2) qua trục đối xứng