Đề bài

a) Xác định hàm số \(y = a{x^2} + bx + c\) biết đồ thị của nó có đỉnh \(I\left( {\frac{3}{2};\frac{1}{4}} \right)\) và cắt trục hoành tại điểm có hoành độ bằng \(2.\)

b) Xét sự biến thiên và vẽ đồ thị hàm số tìm được.

Lời giải của GV Loigiaihay.com

a) Ta có: Parabol cắt trục hoành tại điểm có hoành độ bằng \(2\) nên \(y(2) = 0 \Leftrightarrow 4a + 2b + c = 0\)

Đồ thị của nó có đỉnh \(I\left( {\frac{3}{2};\frac{1}{4}} \right)\) nên \(\left\{ \begin{array}{l}\frac{{ - b}}{{2a}} = \frac{3}{2}\\{\left( {\frac{3}{2}} \right)^2}a + \frac{3}{2}b + c = \frac{1}{4}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3a + b = 0\\9a + 6b + 4c = 1\end{array} \right.\)

Kết hợp, ta được hệ \(\left\{ \begin{array}{l}3a + b = 0\\9a + 6b + 4c = 1\\4a + 2b + c = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  - 1\\b = 3\\c =  - 2\end{array} \right.\)

Vậy parabol đó là \(y =  - {x^2} + 3x - 2\)

b) Hàm số \(y =  - {x^2} + 3x - 2\) có \(a =  - 1 < 0\) và đỉnh là \(I\left( {\frac{3}{2};\frac{1}{4}} \right)\)

Ta có bảng biến thiên:

 

Hàm số đồng biến trên \(( - \infty ;\frac{3}{2})\) và nghịch biến trên \((\frac{3}{2}; + \infty )\)

* Vẽ đồ thị hàm số

Đỉnh \(I\left( {\frac{3}{2};\frac{1}{4}} \right)\)

Trục đối xứng \(x = \frac{3}{2}\)

Cắt trục tung tại A(0;-2) và cắt Ox tại B(1;0) và C(2;0)

Lấy D(3;-2) thuộc (P), đối xứng với A(0;-2) qua trục đối xứng