Đề bài

Cho hình bình hành \(ABCD\) có \(AB = 8\,\,{\rm{cm, }}AD = 12\,\,{\rm{cm}}\), góc \(\widehat {ABC}\) nhọn và diện tích bằng \(54\,\,{\rm{c}}{{\rm{m}}^2}.\) Tính \(\cos \left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right).\)

A. \(\frac{{2\sqrt 7 }}{{16}}\)

B. \( - \frac{{2\sqrt 7 }}{{16}}\)

C. \(\frac{{5\sqrt 7 }}{{16}}\)

D. \( - \frac{{5\sqrt 7 }}{{16}}\)

Phương pháp giải

Tích vô hướng \(\overrightarrow a .\overrightarrow b  = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos (\overrightarrow a ,\overrightarrow b )\).

Lời giải của GV Loigiaihay.com

Ta có \({S_{ABCD}} = 2{S_{ABC}} = 54 \Leftrightarrow {S_{ABC}} = 27c{m^2}\). Diện tích tam giác ABC là:

\({S_{ABC}} = \frac{1}{2}.AB.BC.\sin \widehat {ABC} = \frac{1}{2}.AB.AD.\sin \widehat {ABC} \Rightarrow \sin \widehat {ABC} = \frac{{2{S_{ABC}}}}{{AB.AD}} = \frac{{2.27}}{{8.12}} = \frac{9}{{12}}\)

\( \Rightarrow \cos \widehat {ABC} = \sqrt {1 - {{\sin }^2}\widehat {ABC}}  = \frac{{5\sqrt 7 }}{{16}}\)

Mặt khác góc giữa hai vecto \(\overrightarrow {AB} ,\overrightarrow {BC} \) là góc ngoài góc \(\widehat {ABC}\).

Suy ra \(\cos \left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right) = \cos \left( {{{180}^0} - \widehat {ABC}} \right) = \cos \widehat {ABC} = \frac{{ - 5\sqrt 7 }}{{16}}\).

Chọn D