Cho hai vectơ \(\vec a\) và \(\overrightarrow b \). Đẳng thức nào sau đây sai?
A. \(\vec a.\overrightarrow b = \frac{1}{2}\left( {{{\left| {\vec a + \overrightarrow b } \right|}^2} - {{\left| {\vec a} \right|}^2} - {{\left| {\overrightarrow b } \right|}^2}} \right).\)
B. \(\vec a.\overrightarrow b = \frac{1}{2}\left( {{{\left| {\vec a} \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} - {{\left| {\vec a - \overrightarrow b } \right|}^2}} \right).\)
C. \(\vec a.\overrightarrow b = \frac{1}{2}\left( {{{\left| {\vec a + \overrightarrow b } \right|}^2} - {{\left| {\vec a - \overrightarrow b } \right|}^2}} \right).\)
D. \(\vec a.\overrightarrow b = \frac{1}{4}\left( {{{\left| {\vec a + \overrightarrow b } \right|}^2} - {{\left| {\vec a - \overrightarrow b } \right|}^2}} \right).\)
Ta có \(|\vec a + \vec b{|^2} - |\vec a - \vec b{|^2} = {(\vec a + \vec b)^2} - {(\vec a - \vec b)^2} = 4\vec a\vec b \Rightarrow \vec a \cdot \vec b = \frac{1}{4}\left( {|\vec a + \vec b{|^2} - |\vec a - \vec b{|^2}} \right)\).
- A đúng, vì \(|\vec a + \vec b{|^2} = {(\vec a + \vec b)^2} = (\vec a + \vec b) \cdot (\vec a + \vec b) = \vec a \cdot \vec a + \vec a \cdot \vec b + \vec b \cdot \vec a + \vec b \cdot \vec b = |\vec a{|^2} + |\vec b{|^2} + 2\vec a \cdot \vec b\)
\( \Rightarrow \vec a \cdot \vec b = \frac{1}{2}\left( {|\vec a + \vec b{|^2} - |\vec a{|^2} - |\vec b{|^2}} \right)\)
- B đúng, vì \(|\vec a - \vec b{|^2} = {(\vec a - \vec b)^2} = (\vec a - \vec b) \cdot (\vec a - \vec b) = \vec a \cdot \vec a - \vec a \cdot \vec b - \vec b \cdot \vec a + \vec b \cdot \vec b = |\vec a{|^2} + |\vec b{|^2} - 2\vec a \cdot \vec b\)
\( \Rightarrow \vec a \cdot \vec b = \frac{1}{2}\left( {|\vec a{|^2} + |\vec b{|^2} - |\vec a - \vec b{|^2}} \right)\).
Chọn C